
Modality Abstraction: Capturing Logical Interaction

Design as Abstraction from „User Interfaces for All“

Hans-W. Gellersen
Telecooperation Office, University Of Karlsruhe,

Vincenz-Prießnitz-str. 1, D-76131 Karlsruhe, Germany.
Ph. +49 (721) 6902-49, hwg@teco.uni-karlsruhe.de

Abstract. Modality abstraction is a concept for capturing those parts of a
user interface that describe logical interaction in abstraction from appea-
rance. Thus, modality abstraction provides a common ground for user inter-
faces that may differ in used representational media, input modalities and
dialogue styles. Building modality abstraction into interactive software con-
tributes to portability, modifiability and integration of different modalities.
To facilitate modality abstraction, we have developed the MAUI toolkit with
building blocks forModality Abstracting User Interfaces and the MEMFIS
method for building modality abstraction into interactive software.

1 Introduction

User interface design comprises two sets of design decisions, one set determiningwhat
users can do through the interface and the other one determininghow they can do it. The
first set is concerned with the logical interaction between human and computer. Decisi-
ons in this set are concerned with the types of information that can be exchanged and the
operations a user can invoke. The second set of design decisions is concerned with user
interface appearance. The appearance is determined by the interaction modalities chosen
for information exchange and invocation of operations. An interaction modality defines a
distinguishable way of achieving a logical interaction. Modalities can differ in use of in-
terface devices, human communication channels, representational media and interaction
styles.

Commonly, decisions concerning logical interaction and interaction modality are not se-
parated. Before introduction of graphical user interfaces (GUI), the design space for in-
teraction modalities was limited to text I/O due to technological constraints. With lack of
alternative modalities there was no serious need for separation of logical interaction from
interaction modalities. With introduction of GUIs the modality design space grew, but in
general it was felt that graphics as medium and direct manipulation as interaction style
were defining a superior modality. Built on this assumption, most guidelines, methods
and tools support a very restricted range of alternatives for a given logical interaction.
Most of these methods and tools are appearance-oriented and do not capture the logical
interaction design to be reused for alternative designs.

Recently, new interaction technologies are becoming available and affordable, thus en-
abling new interaction modalities. Also, it becomes apparent that diverse modalities are
required to satisfy demand and expectation of different user communities (home users,
elderly, disabled) in different usage environments (home, car, meeting,…). So, user in-
terface design is challenged to support alternative modalities for an application under de-

velopment. A prerequisite is to capture the commonalities among such alternatives: the
logical interaction design. In this paper, we present a toolkit and a method for capturing
logical interaction design based on the concept of modality abstraction.

2 Related Work

We are not aware of any work explicitly aimed at support for building modality abstrac-
tion into interactive software. Yet, there is related work with respect to some goals under-
lying modality abstraction. First, there is work on capturing commonalities among
various user interface platforms to reduce development effort. Secondly, there is work on
shifting the user interface design focus from appearance to logical interaction; the ap-
proaches can be divided into toolkits and methodologies. Thirdly, there is work on inte-
gration of modalities for interaction flexibility.

Capturing commonalities among diverse platforms. There are many toolkits that capture
commonalities among diverse platforms in platform-independent user interface objects.
User interfaces constructed based on these toolkits can easily be deployed to range of
platforms. These platform-independent toolkits are often referred to asvirtual toolkits or
PIGUI toolkits (platform-independent GUI). The term virtual does not seem appropriate,
as these toolkits are simply generalisations from a range of fairly similar GUI toolkits, so
we clearly prefer the term PIGUI [8]. PIGUI objects are platform-independent but fully
committed to the GUI paradigm. They have attributes and operations explicitly related to
the desktop metaphor and to direct manipulation. So, they can only be reused for a cur-
rently very popular but nonetheless fairly limited range of platforms.

Shifting design focus from appearance to logical interaction. In development of GUI the
design focus is usually on appearance. Commonly, user interfaces are built before the
functional core of an application, which naturally leads to focus on the looks rather than
on logical interaction between functional core and user. Work addressing this issue can
be divided into toolkit and methodological approaches. Toolkit approaches aim at provi-
sion of semantic-oriented rather than appearance-oriented user interface objects. The
Garnet system provides a set ofinteractors as abstractions from low-level controls defi-
ned by behaviour rather than appearance [10]. Still, the interactors are clearly GUI-ori-
ented, for example themove-grow-interactor. The ACE system providesselectors as
abstract interaction objects supporting user choices of either commands or data values.
Selectors are uncomprisingly defined by selection semantics in abstraction from
modalities [9]. Still, they are not aimed at building modality abstraction into a system.
Rather they are one of three interrelated collections of building blocks for construction of
semantic-based concrete user interface objects. The other two collections comprise basic
data types and concrete presentation objects. In contrast to toolkit approaches, methodo-
logical approaches aim at deriving required user interface objects from task models. One
such approach is the Adept design process [13]. Adept starts with modelling the tasks to
be performed by the computer system in abstraction from user tasks. These tasks are then
mapped to abstract interaction objects. These are simply qualified by the type of input
they accept from the user, so there are for example objects for text entry or numeric in-
put. So, the abstract interface model is limited for capturing logical interaction as it only
captures temporal relations among data entry actions. Another very interesting task-ba-
sed approach is IMAP for information mapping to interaction modalities [3]. IMAP
starts with task analysis for identification of the information to be exchanged between
human and computer. A system of rules aids the designer in mapping information to sui-
table modalities for realising the information exchange.

Integration of modalities for interaction flexibility.The common approach for supporting
alternative modalities is to extend a given technology to support an additional technolo-
gy. For example, speech interaction facilities are currently being added to computer sy-
stems by extending GUI technology. This leads to inappropriate notions such asdisplay
for referencing a speaker as output device in audio extensions for X. Speech-based in-
teraction objects are unintuitively cast in terms of widgets, for example a speech-based
command would be modelled asbutton. Savidis et.al. presented a more suitable ap-
proach to integration of modalities in the context of developing integrated solutions for
blind and sighted users [12]. They acknowledge the need for abstraction from modalities
and argue that specific modalities can only be appropriately supported when they are de-
fined with respect to an abstraction rather than with respect to each other. In their HO-
MER system they support construction ofvirtual objects, though it is not clear how
proper abstraction is ensured in this process.

3 MAUI: AToolkit for Modality Abstraction

3.1 Modality-Abstracting User Interface Objects

The MAUI (Modality-Abstracting User Interface) toolkit provides abstract interaction
objects as building blocks for modality abstraction. Each MAUI object is a mechanism
for information exchange between human and computer, defined by the kind of informa-
tion exchange it enables. MAUI objects are organized in an inheritance tree. The root ob-
ject Interaction is the generalmost interaction object capturing attributes and
operations shared by all interaction objects. For instance, it has an attributePercepti-
bility (an abstraction fromvisibility) and operationsmake_perceptible and
make_imperceptible . Each specialization in the hierarchy is defined by a discrimi-
nator cleanly separating the different specializations of an interaction object. Hence, the
structure can also serve as decision tree for selection of objects in the design process (cf.
below). The root object is specialized intoInput andOutput with the direction of in-
formation exchange as discriminator.Output is in fact identical withInteraction
but has been added for reasons of symmetry.Input is the abstraction of interaction ob-
jects that are responsive to user events. It inherits attributes and operations fromIn-
teraction and adds attributes and operations common to all objects that are
responsive to user events, for instance an attributeSensitivity determining whether
or not an object is currently responsive.

Both Input and Output are further specialized based on discrimination of control
flow and data flow.View is the abstraction of all output objects that realize data flow
from computer to human by making application concepts perceptible at the user inter-
face.Message is the abstraction of those output objects that can make control informa-
tion perceptible. These two output concepts have important differences, for instance,
View as opposed toMessage has to be associated with a conceptual object of the ap-
plication domain; further it requires an update operation and update behaviour, which
Message does not need as it delivers static information, such as error messages. Input
objects are grouped intoControl andEntry . Control objects have acallback ope-
ration in common for invocation of an application function in response to a specified user
event. The simplest specialization isSignal , which can sense only one predefined user
event and reacts with unparametrized invocation of an application function.Command
enables editing of control information and a parametrized callback. Data entry objects
have in common that they inherit the behaviour of view objects. FromView they inherit
an association with a conceptual object. It is this object whose value can be manipulated
by the data entry object. Inheritance fromView allows data entry objects to be used for

two purposes at once: display and manipulation of application state. Display and mani-
pulation are commonly combined in state-of-the-art user interfaces. Specializations of
Entry areOption which enables value selection from a number of objects,Valuator
which supports value selection from a continuous range of values, andEditor for
editing of input data.

Figure 1 shows the inheritance tree of MAUI objects in OMT notation. We do not consi-
der the hierarchy to be complete, in particular we investigate further specialization of
output objects. Work of the AI community on automated presentation design has produ-
ced characterizations for information to be presented, for example dimensionality and
urgency [1]. We take these characterizations as well as characterizations of communica-
tion intent as starting point for identification ofView andMessage discriminators.

3.2 From Abstract to Concrete User Interface Objects

Concrete user interface objects can be derived from MAUI objects by adding modality-
dependent attributes and operations. An idealistic vision would be to further refine the
MAUI object hierarchy top-down across a border of modality-dependence to embody
objects of diverse modalities in a single inheritance tree. Alas, a prerequisite would be
isolation and ordering of discriminatory modality decisions. Recent work in modality
theory identified very useful discriminators such as linguistic vs. non-linguistic, dynamic
vs. static, analogueness, specificity and arbitrarity for characterizing modalities [2]. Yet
these features are largely independent of each other, have no suitable ordering and thus
do not lend themselves for hierarchical organization.

Still, any toolkit of concrete user interface objects, for example GUI widgets, can be rea-
lized by specialization of MAUI objects. New toolkits to be developed can inherit logical
interaction capabilities from MAUI objects and add modality-specific attributes and ope-
rations. Existing toolkits can be adapted to MAUI object interfaces by using theadapter
design pattern (cf. Gamma et.al.’s catalogue of object-oriented design patterns [6]).

Input Output

Interaction

Control Entry

View Message

Fig. 1. Inheritance tree of MAUI objects

Signal EditorValuatorOptionCommand

4 MEMFIS: AMethod for Building Modality Abstraction into
interactive Software

4.1 Overview

A toolkit, be it well designed, does not ensure good design practice. Hence, we have de-
veloped MEMFIS, a method that systematizes the task of building modality abstraction
into interactive software. MEMFIS (Method for Engineering Multimodal flexible In-
teractive Software) is based on a object-oriented and a task-oriented model of interactive
applications. MEMFIS defines of a set of activities for development of a logical interac-
tion design leading to the construction of an abstract user interface based on MAUI ob-
jects. An important aspect of the method, discussed in [7], is integration of dedicated
user interface design support in object-oriented software engineering practice.

The MEMFIS method is based on two complementary models for interactive applicati-
ons: SAM (Static Architecture Model) and TOM (Task-Oriented Model). SAM models
the static architecture of an application in terms of objects that are interrelated in associa-
tions, aggregations and generalizations/specializations. All existing object-oriented me-
thods (OOM) for software development contain suitable models for static architecture.
For our purpose we chose Rumbaugh’s OMT (Object Modeling Technique [11]) notation
as it is in wide-spread use and easy to understand in its resemblance to entity-relati-
onship-models. To complement static architecture modelling we developed TOM, a new
model for dynamic and functional aspects of an application. These aspects are rather
poorly supported in existing object-oriented methods [4]. TOM embodies powerful mo-
delling concepts which will be explained below in the course of describing the develop-
ment activities of our method.

4.2 MEMFIS Activities

MEMFIS consists of a number of activities for development of interactive software with
built-in modality abstraction. All these activities contribute to the development of the
SAM and TOM models by extending rather than transforming them. All activities are
coordinated via these two models which renders the development process seamless. So
the various activities do not have to be performed in any specific sequence and can also
be performed iteratively.

Essential Modelling.A fundamental analysis activity is the identification of concepts and
tasks in an application. Modern analysis methods use scenarios or use cases to this end.
Scenarios commonly contain modality commitments, for example concepts such as
screen andbutton, or event traces committed to particular dialogue styles. Of course, in
order to achieve modality abstraction, such commitments have to be avoided. Therefore
we adopt Constantine’sEssential Use Case Modelling[5] for identification of the essen-
tial tasks and concepts of an interactive application. Part of the philosophy behind this
variation of scenario-based modelling is to assume a perfect world with unlimited tech-
nological possibilities so to keep use case descriptions technologically unconstrained.

Task Decomposition. This activity develops a task hierarchy as core of the TOM model.
The fundamental purpose of an application as identified by essential modelling is the
root of the hierarchy. Tasks to be performed or goals to be achieved in order to fulfil the
fundamental purpose are recursively modelled as subtasks. Figure 2 shows the task de-
composition of a simple application that we will use subsequently for illustration of our
method. The TOM notation uses ellipses to represent tasks, and nested boxes to describe
hierarchical task structure. Nested boxes are used instead of typical tree representations

to reserve the use of arcs for representation of data- and controlflow within the same dia-
gram. The application is a simple german-english dictionary that supports adding of
word pairs and lookup of translations. The task of adding a word pair requires a german
word to be provided, an english word to be provided and the pair to be stored in the dic-
tionary. Subtasks of the lookup task are provision of a word as key for the lookup and the
actual lookup of the translation. In the task description, we deliberately use the notion of
“provide data” instead of “enter data”. The latter notion would carry the assumption that
the required data has to be provided by the user. Even if this is obviously the case, we
prefer to defer such a decision to a dedicated task allocation activity.

Static Architecture Modelling.Concepts identified in essential use cases are candidates
for objects in SAM. The standard OOM literature describes a repertoire of static archi-
tecture modelling activities. Here, we will only describe the SAM model of the dictiona-
ry application, so we can reference it in description of other development activities. The
central object isWORD_LIST, which is anaggregation (diamond shape) ofmany (ball
shape) objectsWORD_PAIR which in turn is an aggregation of two objectsWORD.
WORD_LIST is a generic object with attributes and operations for management of a list
of word pairs, such as list operations and lookup operations.DICTIONARY is aspeciali-
zation (triangle shape) ofWORD_LIST and adds application specific details, for example
that the two elements of a word pair are referenced as german or english word, respec-
tively. In contrast to common static architecture modelling approaches, we explicitly ex-
clude user interface objects or objects representing the user from this modelling activity.
The rationale for this is that the user interface or in general the human-computer relati-
onship is developed in dedicated modelling activities described below.

Specification of Temporal Relations.This activity refines the TOM model by specificati-
on of temporal relations among tasks. For each composite task a regular expression spe-
cifies the possible sequences of subtasks. In the TOM notation, the expression is
included at the top of each box associated with a composite task (cf. fig. 4). The regular
expressions contain operators for sequential (comma), interleaved (and), and alternative
(or) task execution. For example, the regular expression assigned to the task
add_word_pair of our sample application specifies that the two subtasks for provisi-
on of a german and an english word can be executed concurrently but before the subtask

provide
ger man

keep
dictionary

find
transl.

add
word pair

provide
english

store
pair

provide
word

lookup

Fig. 2. Basic TOM model of the dictionary application

of storing the new word pair. It further specifies that this sequence has to be executed at
least once.

Dataflow Modelling.This activity identifies dataflow between tasks. In a first step, the
required input data is established for a task. Then a task has to be identified as provider
of this input. This may involve adding of a new task. The relation between provider and
consumer tasks is modelled by a dataflow arc (cf. fig. 4, solid lined arcs). Dataflow arcs
can be associated with objects modelled in SAM to specify the type of data flowing from
provider to consumer task (cf. fig. 5). When the input requirements of all tasks are satis-
fied, the tasks have to be checked for „dangling output“. For each output a consumer task
has to be found. Again, this may involve adding of a new task. In our example develop-
ment, the taskuse_translation was added as destination of the output generated
by find_translation . The rationale for insisting on a closed system of tasks with a
provider task for each input and a consumer task for each output is to avoid external data
sources and sinks in the model. Traditional dataflow models have the concept of actors
for such external sources and sinks. We avoid actors for two reasons. First, dataflow mo-
dels of interactive applications tend to use a single actor to model the user. This leaves a
very important part of an interactive systems, the user, as completely unstructured source
and sink of data. Human tasks in an interactive system remain hidden. Secondly, the in-
troduction of actors commits a task allocation in the process of dataflow modelling. Da-

Fig. 3. SAM model of the dictionary application

DICTIONARY

WORDWORD_LIST WORD_PAIR
2

provide
german

find
transl.

add
word pair

provide
english

store
pair

provide
word

lookup

Fig. 4. TOM model with temporal relations, control- and dataflow

(select, (add ∨ lookup))+

keep
dictionary

select
task

((german ∧ engl.),store)+ (word,find,(recovery ∨ use))+

failure
recovery

use
transl.

taflow modelling and task allocation are orthogonal concepts and ought to be treated
separately.

Controlflow Modelling.Specification of temporal relations and dataflow dependencies
determine part of the controlflow among tasks. The controlflow modelling activity aims
at completing the picture. For all sets of alternative tasks, a task has to be identified that
holds the decision about which alternative to take. Possibly, a new task has to be added to
the model. For instance, in our sample applicationselect_task has to be added for
control of the alternative tasks of adding a word pair and performing a lookup. In additi-
on to the handling of alternatives the handling of exceptions such as error conditions has
to be modelled. Each task has to be checked for exceptional conditions that might occur.
If the exception can not be handled by the task itself, another task has to be identified for
handling it. In our sample application, we identify the error condition “word not found”
in the taskfind_translation . A new taskfailure_recovery is added to the
model to handle this error. The alternative betweenfailure_recovery and
use_translation can obviously be controlled byfind_translation , so no ad-
ditional task is required. In the TOM model, the actual controlflow is annotated with dot-
ted lined arcs (cf. fig. 4).

Task Allocation.In MEMFIS, task allocation is performed at two levels. At a more gene-
ral level, tasks are allocated to either human or computer. At a more detailed level, tasks
are allocated to SAM objects. A technique for the more general allocation is to classify
tasks according to the kind of processing they require. Tasks that would typically be allo-
cated to the computer are those that require data transformation or algorithmic proces-
sing. Tasks that typically would be allocated to the human are those that involve data
creation, negotiation or judgement. A technique for the more detailed level of task allo-
cation is to establish a relationshipis-responsible-for between SAM objects and TOM ta-
sks. Fig. 5 shows our sample application after task allocation. The objectWORD_LIST
was identified to be responsible for the tasksstore_pair and
find_translation , as these are rather generic and not dependent on our particular
dictionary. The tasksadd_pair and lookup are more application specific as they
hold decisions that do not apply to word lists in general, for example the decision that
subtask sequences can be executed once or repeatedly. Thus, these tasks are allocated to
the application specific objectDICTIONARY. Tasks for which no responsible SAM ob-
ject can be identified are candidates for human tasks, as the SAM model explicitly exclu-
des user or user interface objects. So, the two levels of task allocation are integrated
smoothly and do not have to be performed in any specific sequence. The TOM notation
reflects task allocation in two ways. First, identifiers of SAM objects are included in the
ellipses representing tasks for which the objects are responsible. Secondly, a separation
line is included to separate human tasks from computer tasks. The nested box notation
allows the task structure to be reorganized so human tasks are placed below the line and
computer tasks above the line. With this notational convention, the separation line which
in fact represents the human-computer interface, becomes a focal point of the TOM dia-
gram (cf. fig. 5). In a CASE tool currently being developed for support of our notation,
task allocation is actually performed by dragging and dropping of task ellipses over a gi-
ven separation line rather than by drawing a complex separation line.

Construction of Modality Abstraction.After task allocation, the dataflow and controlflow
arcs crossing the task separation line establish the required interaction between human
and computer. For each arc crossing the separation line, an interaction object enabling
the required information exchange has to be identified. The MAUI object inheritance
tree eases this identification process, as the discriminators for specializations are based

on logical interaction capability. The direction of an arc and the distinction of data- and
controlflow directly lead to identification of eitherControl , Entry , View or Mes-
sage as required interaction object. Additional information from the model such as an-
notation of dataflow arcs with SAM objects can be used for further specialization of
these objects. Fig. 6 shows the MAUI objects identified for our sample application. The
controlflow arcs fromselect_task to add_pair andlookup are mapped toSi-
gnal objects, as the controlflow is unparametrized. All dataflow arcs from the user to
the computer are mapped toEditor objects as the range of possible values for the data
in question can neither be enumerated (thenOption would have been appropriate) nor
be mapped to a representation required for aValuator object. Further dataflow and
controlflow fromfind_translation to the user are mapped to aView object and a
Message object. The identified objects are leaves of a hierarchy constituting the moda-
lity abstracting user interface. The hierarchy is established by grouping objects recursi-
vely.

A default for grouping of interaction objects is to mirror the hierarchical task structure.
That means, for each higher-level task aGroup object is modelled that contains the in-
teraction objects mediating between its subtasks.Group objects control their compo-
nent interaction objects much like parent widgets but of course with respect to logical
interaction behaviour. All interaction objects are modelled in SAM notation. Note that
the identified interaction objects are instances while the objects modelled in fig. 2 are
classes. In contrast to object classes, object instances are represented by rounded boxes.
Of course, the identification of user interface objects has to be reflected in the SAM mo-
del, for example subclasses ofView andEditor have to be added and associated with
theWord object.

Mapping to Concrete User Interface.The mapping from modality abstracting user inter-
face to a concrete user interface is performed on a per object basis. For each MAUI ob-
ject a concrete counterpart has to be identified. This concrete object has to support the
abstract objects’ interface (its attributes and operations). For any given user interface

provide
german

find_transl.
WORD_LIST

add_pair
DICTIONARY

provide
english

store_pair
WORD_LIST

provide
word

lookup

Fig. 5. TOM model after task allocation

(select, (add ∨ lookup))+

keep
DICTIONARY

select
task

((german ∧ engl.),store)+ (word,find,(recovery ∨ use))+

failure
recovery

use
transl.

DICTIONARY

WORD WORD WORD WORD

technology, possible counterparts of MAUI object as well as guidelines for mapping can
be specified. We have developed such guidelines for mapping to GUI and for mapping to
speech-only interaction. The guidelines consist of simple rules, for GUI for example
“map signal to button” and “map group of signals to menu”. Such guidelines are aimed
at mapping a modality abstraction to a concrete user interface in the context of a particu-
lar technology. With new technologies becoming available as true design options, there
is increasingly a need for more general guidelines for mapping from abstract objects to
objects associated with different modalities. A first step in this direction is Bernsen’s
IMAP method [2].

5 Current status

We have implemented the MAUI toolkit in the object-oriented language Eiffel. Based on
this toolkit, we have developed a speech-only user interface toolkit whose objects inherit
the MAUI interface. Further, we have applied the adapter pattern to integrate Vision, Eif-
fel’s platform-independent GUI toolkit, with MAUI. The adapter objects inherit their in-
terfaces from MAUI objects and delegate operations to Vision objects. For support of the
MEMFIS method we currently develop a CASE tool. The CASE tool contains graphical
editors for the SAM and TOM models and is integrated with the EiffelBench software
development environment. SAM and TOM models can be mapped to Eiffel code templa-
tes. SAM objects can be mapped directly to Eiffel objects. The hierarchical tasks in
TOM are mapped to a delegation tree of operations. Both toolkit and method have been
applied and iteratively refined in a lab environment, and are currently being validated in
a small real world project.

provide
german

find_transl.
WORD_LIST

provide
english

store_pair
WORD_LIST

provide
word

Fig. 6. Mapping from TOM model to MAUI objects

select
task

failure
recovery

use
transl.

WORD WORD WORD WORD

SIGNAL
do_add_pair

SIGNAL
do_lookup

EDITOR
edit_german

EDITOR
edit_english

EDITOR
edit_word

VIEW
word_view

MESSAGE
not_found

GROUP
add_word

GROUP
select_task

GROUP
lookup

GROUP
keep dict.

6 Conclusion

We believe, modality abstraction is a very important concept for future development of
interactive software. While the design space of interaction modalities is rapidly growing
there is an urgent need for capturing the modality-independent parts of a user interface in
a modality abstraction. Such an abstraction is the basis for development of interactive
software against platforms that differ in supported interaction technologies. Further, mo-
dality abstraction is the basis for evolvability of interactive software: emerging technolo-
gies can easily be integrated into interactive software if modality-independent and
modality-dependent parts are separated. Also, modality abstraction supports integration
of multiple modalities as it captures the common ground for different modalities.

In this paper we have addressed the problem of building modality abstraction into in-
teractive software. As a solution we have presented a toolkit and a method. The MAUI
toolkit provides generic building blocks for construction of modality abstracting user in-
terfaces. The toolkit was developed by recursive specialization of interaction capabilities
rather than by generalisation from existing user interface toolkits. While the toolkit un-
compromisingly abstracts from modalities it still provides enough structure to support
straightforward mapping to concrete user interface toolkits. In addition to the toolkit we
presented the MEMFIS method for systematic development of interactive software with
built-in modality abstraction. MEMFIS consists of a number of activities that are inte-
grated via two complementary models of interactive applications. From a user interface
design perspective, MEMFIS is an approach that shifts focus on logical interaction rather
than appearance. From a software engineering perspective, MEMFIS is an evolution of
object-oriented methods towards integration of dedicated activities for user interface de-
velopment.

7 REFERENCES

1. Arens, Y., Hovy, E., Vossers, M. On the Knowledge Underlying Multimedia Presenta-
tions. In Maybury, M.T. (Ed.)Intelligent Multimedia Interfaces, AAAI Press/MIT
Press, Menlo Park, 1993, pp. 280-306.

2. Bernsen, N.O. Modality Theory: Supporting Multimodal Interface Design. In Proc. of
ERCIM Workshop Multimodal Human-Computer Interaction, Nancy, France, 2-4
Nov. 1993, pp. 13-23.

3. Bernsen, N. O. Information mapping in practice: Rule-based multi-modal interface
design.In Proc. Of 1st Intl. Workshop On Intelligence And Multimodality In Multi-
media Interfaces (IMMI-1), Edinburgh, July 1995.

4. Boger, M. and Gellersen, H.-W. Dynamic and Functional Modelling in Object-Orien-
ted Methods: a Critique and a new Approach. Technical Report, Department of Com-
puter Science, University of Karlsruhe, Sept. 1995. Submitted for publication.

5. Constantine, L.L. Essential Modeling. Interactions, Vol. 2, No. 2, April 1995, pp. 34-
46.

6. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns. Elements of
Reusable Object-oriented Software. Addison-Wesley 1994.

7. Gellersen, H.-W. Software Engineering meets Human-Computer Interaction: Integra-
ting User Interface Design in an Object-Oriented Method. In Proc. of SOFSEM ‘95,
Milovy, Czech Republic, Nov. 1995, Springer Verlag.

8. Guthrie, W. An Overview of Portable GUI Software, SIGCHI bulletin, Vol. 27, No. 1,
Jan. 1995, pp. 55-69.

9. Johnson J. Selectors: Going Beyond User-Interface Widgets. In Proc. CHI’92 Human
Factors in Computing Systems, May 1992, Monterey, CA, pp. 273-279.

10.Myers, B.A. Ideas from Garnet for Future User Interface Programming Languages. In
Myers, B.A. (Ed.) Languages for Developing User Interfaces. Jones and Bartlett,
Boston, MA, 1992, pp. 261-277

11.Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. Object-Oriented
Modeling and Design. Prentice-Hall, Englewood Cliffs, 1991.

12.Savidis, A. and Stephanidis, C. Developing Dual User Interfaces for Integrating Blind
and sighted Users: the HOMER UIMS. In Proc. CHI’95 Human Factors in Compu-
ting Systems, Denver, May 1995, pp. 106-113.

13.Wilson, S., Johnson, P., Kelly, C. Cunningham, J. and Markopoulos, P. Beyond
hacking: a Model Based Approach to User Interface Design. Proc. of HCI‘93, Lough-
borough, UK, University Press Cambridge.

