
Guiding User Interfaces Equationally

T. B. Dinesh

CWI (dinesh@cwi.nl)

S. �Usk�udarl�

Programming Research Group, University of Amsterdam, (susan@fwi.uva.nl)

Amsterdam, The Netherlands

October 31, 1996

1 Introduction

Algebraic or equational speci�cations are popular due to their simplicity. We

advocate that such an approach could be of use for guiding user interfaces. If a

user interface design process is to be accessible to a diverse user population that

include novice computer users, it has to break out of the two stage user interface

design| the �rst stage, where a user interface builder is used to develop the look

of the interface and the second phase which requires programming the semantics

in a low level language.

Equational speci�cations can be executed by orienting equations as left-to-

right rewrite rules. Visual algebraic speci�cations are considered as a formalism

for specifying visual languages [�UD95], where among other tools, generic syntax

directed editors for constructing visual terms can be generated [�Usk94]. Alge-

braic speci�cations, like functional languages, su�er from the lack of constructs

that allow interaction with an user during execution. This is a drawback for

specifying languages that are interactive by nature.Also of importance is the

utility of seamlessly providing the user-interface speci�cation and interaction,

since on the average, user interface development accounts for approximately

50% of the cost of producing an application [Gra95].

We examine the utility of extending algebraic speci�cations (to handle inter-

action) in meeting the demands of interactive tools for visual languages and user

interfaces. As a result of this extension, it is possible to provide a user de�nable

speci�cation of a language interface itself. We concentrate on the utility of a

such an extension in the presence of the generated visual term editors by using

only the generic features of these term editors. We argue that interaction with

a user is nothing but constructing terms in editors. Thus, during execution,

the user will be presented with terms whose construction must be completed.

1



The particular appearances of such editors could be delegated to a separate

user-interface speci�cation.

In the next section we briey discuss an algebraic speci�cation formalism to

provide some context for our work. In Section 3, we again briey indicate the

nature of the extension we are investigating. In Section 4, we give a detailed

example that demonstrates our approach.

2 Algebraic Speci�cations

Consider the following signature that describes a language de�ned by sort B:

sort B

functions

true ! B

false ! B

B _ B ! B

One can think of these are BNF rules (reading right to left) where B denotes

a non-terminal and true; false and _ denote terminals. With the above signature

we can construct terms of the form true, false , (true _ false) _ true, � � � .

2.1 Conditional Rewrite Rules

Conditional equations are used to specify language semantics. Conditional

rewrite rules [BK86] are used to execute conditional equations.

A conditional rewrite rule takes the form

s1 = t1; � � � ; sn = tn
s0 = t0

with n � 0, and si; ti (0 � i � n) terms. Usually, some well-de�nedness

constraints are imposed on the variables of the conditions in order to ensure

their de�nedness during the execution.

For example, the following oriented (unconditional) equations describe the

semantics of the language B.

true _ x = true

false _ x = x

where x is a variable over the sort B, which we sometimes write as: x! B.

2.2 Meta-variables

Meta-variables are place holders available while syntax-directed editing. They

represent the holes in incomplete terms. A hole of sort SortName is repre-

sented with by hSortNamei and can be replaced with any term of the sort

2



SortName. They allow interactively building the intended term by choosing

among permissible substitutions of the language constructs. Multiple occur-

rences of place-holders of the same sort are independent of each other. E.g., In

the term hBi _ hBi the two hBis represent separate (unrelated) place-holders.

3 Interaction

We describe how an algebraic speci�cation formalism, interpreted as a term

rewriting system, can be extended to accommodate interaction.

The situation and the extension is illustrated by a toy example. Consider

the following set R of oriented (conditional) equations (i.e., rules):

true _ false = true

x 6= false

true _ x = true _ y

where x and y are variables over the sort B (described in the previous section).

This is not a term rewriting system in the usual sense as the second rule

introduces y, a new variable on the right-hand side. However, as we will show,

this extension (in some form or other) of the notion of term rewriting systems

is essential in our case. If we start reducing a term true _ true, it matches the

left-hand side of the second rule (binding x to true). The condition x 6= false

succeeds (as x is bound to true) and this term will be rewritten to say true _y0,

where y0 is a renaming of variable y | di�erent from other existing variables.

Now, for further reduction of this term, it has to match one of the left-hand

sides again1. The unbound variable y0 cannot match false (in the �rst rule) but

it can match x in the second rule. In our case, the condition x 6= false would fail

since it cannot be determined that x is not false . Therefore, the term true_true

reduces to true _y0 and the reduction stops. It can be restarted by concretizing

y0 to any valid term (any term of sort B). This narrowing substitution that

happens external to the rewriting essentially models input.

In this case, rewriting continues as long as true is entered interactively and

stops as soon as false is entered, terminating the interactive reduction process.

We can denote such a situation by:

true _ true
� R

��������!
true� false

true

where true_true is the initial term,
� R
�! denotes the multi-step reduction relation

over R, true � false is a regular expression describing the input sequence, and

true is the resulting normal form.

1
Since y0

is an unbound variable, the term true_y0
could unify with either false in the �rst

rule or with the variable x in the second rule. Taking into account both these possibilities is

the subject of narrowing based term rewriting systems. However, in a typical term rewriting

system only matching (and no uni�cation) is present.

3



3.1 Input

The reason the rewriting stops in the y0 case is pathological since it was not

because true _ y0 could not match any of the left-hand sides, but because a

condition failed. For interaction, we need an interpretation that prevents true _

y0 from matching any of the left-hand sides independently of any conditions

of the rules. This is important since a desire to interact is a commitment, as

an interaction is observable (modi�es the world). We write the above rules as

follows:

true _ false = true

x 6= false

true _ x = true _ �(hBi)

Note the use of �(hBi) in place of y. Since y was declared to be of sort B,

hBi indicates a place holder which needs to be �lled in; and \�" lifts the B term

to a term of a special sort say, �-sort2 | thereby preventing it from matching

any B term. We can also read this as an indication that only an external process

can narrow its contents. The �(hBi) term becomes a B term by projecting the

term that was used as a replacement for the place-holder. Thus

�(hBi)[true] = true

where t�[tB ] indicates the replacement of the place-holder (hBi here) in t� by tB
and retracts the �-term to a term of sort B so that it could match variables of

sort B. Again, the place holders have the usual meaning that every occurrence

is unique.

3.2 Output

Until now, we have considered input but what is interactive output in such

a rewriting environment? We can put additional constraints on the nature of

values expected from an external process. For instance, we can require that

the replacements for the place-holder matches certain patterns. In the above,

instead of allowing all B values, one could restrict the possible substitutions to

hBi to values that are of the form false _ � � � . Consider the alternate set R1 of

rules:

true _ false = true

x 6= false

true _ x = true _ �(false _ hBi)

2
The non B-ness propagates upwards| parent is not a B term since a child is not a B

term.

4



Here the constraint on the input is that it should not only be of the sort B,

but should also have the form false _ � � � . Thus a user can provide a term that

narrows the contents of � and then the projection of the term that replaced the

place-holder would be the value of the � term. Thus

�(false _ hBi)[false _ true _ false ] = true _ false

for the case in the second rule of R1. A term true_ true reduces to a term of the

form true _ �(false _ hBi) which could further reduce to true _ e (for some B

term e) when a user provides the term false _ e. The � terms can be thought of

as retraction functions that retract to the value of its place-holder. Thus every

� term is allowed only one place holder, the sort of which is the sort of the

term it retracts to. In an interactive sense, this means that a user is constrained

to provide a term of the form false _ � � � for the reduction to proceed further.

The \false_" provides to the user, context information while inputing a value

to hBi. The context information can in turn be perceived as output. Note that,

this results in requesting speci�c patterns. Thus:

true _ true
� R1

�������������������!
(false_true)� (false_false)

true

Alternatively, �(false _ hBi) in the second rule could be �(enter value : hBi)

where \enter value : B" is a valid term over some sort.

Finally, as a special case of this situation, for illustration purposes, is R2:

true _ false = true

x 6= false

true _ x = true _ �(false)

Here, the interactive-rewriting terminates only after receiving an \input" of

false . The sort and the value the �-term retracts to when it has no place-holders

would in general be the identity value. Here a user has de�ned it to retracts to

value false after communication. Using R2, the situation is:

true _ true
� R2

���!
false

true

even though one can see that the normal rewriting can terminate without any

need for interaction. We can read this as \term reduces to true with an output

false".

5



4 Calculator Example

In order to demonstrate how a user interface can be guided by equations we

provide a very simple example of a calculator. Albeit small, this example de-

scribes a graphical language with semantics requiring human interaction. This

example, while being very simple, is not �ne tuned for any speci�c interaction

style and thus only the default interaction is discussed.

Building a user interface is done in two phases. The �rst phase is to specify

the look of the interface. This is similar to many common user interface builders

available today. The additional exibility we provide is that certain syntactic

constructs can be grouped together by using a small constraint language for

layout of the interface look. The details of the visual syntax speci�cation of the

calculator is not provided here. But rather, the focus is on aspects related to

input and output and its speci�cation. However, the following sort de�nitions

are needed to follow the forthcoming speci�cations.

Enter ! OP

+ ! OP

= ! OP

NUM ! DISPLAY

OP
OP
OP ! OPS

DISPLAY
OPS ! CALC

The Calculator language de�nes three operations: Enter for resetting the

current value of the calculator; + for adding a new value to the running total

of the calculator; and = for displaying the total. The sort OPS describes that

three OPs are placed in vertical alignment and the sort CALC describes that

a DISPLAY and OPS are layed out such that the OPS is centred and below

the DISPLAY. This is speci�ed by constraining these appropriately [�UD95].

A visual term of the calculator could be, depending on nature of constraints

speci�ed:

0

Enter

+

=

6



4.1 Calculator Query Syntax

The calculator requires two input functions: one for retrieving an \OP" selection

and one for retrieving values. The values in question are numbers, the de�nition

of which is imported (prede�ned).

In order to interact we need to de�ne syntax for queries, which would gener-

ally be an extension to the Calculator syntax itself. Queries can be as simple or

complicated as desired. The simplest queries are just meta-variables appearing

in a term window without indicating any context. In essence the goal of a query

is to fetch some value and the manner in which the input is retrieved only bares

in interface aspects. The point is that the language designer can simply de�ne

input prompts (which are in fact the outputs) in an uniform and convenient

manner. The utility of these de�nitions can be seen in Section 4.2.

CALC NUM ! CALC-Q

CALC OP ! CALC-Q

For example, CALC-Q will be used to inform the current state of the calcu-

lator to a user who can then respond by \building" the desired input term. In

this case, either the NUM or the OP, depending on the context.

4.2 Evaluations Semantics

After the �rst stage which is specifying the desired user interface components

and the layout, the second stage involves specifying the semantic component

of the user interface. This is done using equations. Note that one might need

to specify additional syntax during this stage that need not be part of the user

interface itself. For the syntax of the calculator evaluation we use the additional

syntax of the eval and eval-op and de�ne their functionality.

eval(CALC,NUM) ! NUM

eval-op(CALC,OP,NUM) ! NUM

The semantics is de�ned using conditional equations as explained in Sec-

tion 2.1. These equations make use of the following variables:

Calc ! CALC

Ops ! OPS

TheOp ! OP

Store;Num;Num0
! NUM

For example, Calc could be bound to any calculator (visual) term that can be

composed from the above syntax speci�cation for the sort CALC. Furthermore,

in this example, we use the notation term instead of the �(term) used in

Section 3. We provide a brief explanation for each equation below.

7



equations

Evaluating a CALC term with a given store, is to query for an operation and

then evaluate the term using the result of this query. The variable TheOp

represents the result of interaction that would be obtained after interactively

binding the variable to an operation. Note that the current Calc contents are

displayed to the user in order to provide the context for interaction. The right

hand side of the equation gets the user desired operation which is bound to

the variable TheOp which guides the interface to the next interaction caused by

eval-op.

TheOp = Calc hOPi

[1]
eval(Calc; Store) = eval-op(Calc; TheOp; Store)

Evaluating a Calc when the operation is Enter is to query for a new number

which will be displayed in the calculator.

[2] eval-op

0
B@ Num

Ops

; Enter ; Store

1
CA =

eval

0
B@ hNUM i

Ops

; 0

1
CA

Evaluating when the operation is = , is to display the value in the Store.

[3] eval-op

0
B@ Num

Ops

; = ; Store

1
CA =

eval

0
B@ Store

Ops

; Store

1
CA

Evaluating when the operation is + , is to query for a number and display the

result of the query, as well as storing the sum of the new number and the old

store as the new store.

8



Num0 = hNUM i

[4]

eval-op

0
B@ Num

Ops

; + ; Store

1
CA =

eval

0
B@ Num

0

Ops

; Store+Num0

1
CA

Note that Num0 occurs in two places on the right-hand side. This does not

mean that the interaction would be twice but is equivalent to having an auxiliary

function that distributes the result of interaction to the two occurrences.

4.3 Interaction issues

Thus far, we have touched upon the syntax and semantic aspects of the cal-

culator. In this section, we discuss how all these speci�cations can be brought

together to yield a practically useful set of tools for an end user environment

for this language.

4.3.1 The term editor

The term editor, which is generated from the syntax speci�cation of a language,

allows the creation of terms of that language. For the Calculator language, the

Calculator Term Editor allows the creation, for example, of the following term:

0

Enter

+

=

4.3.2 Input and output representation

When an input request is presented the user can replace the meta-variable with

a permissible replacement as dictated by the language syntax, which is always

type correct and represented just as the syntax is de�ned (graphical input).

Thus, the variable which was unbound becomes bound after the user interaction.

In the case of human interaction we may very well prefer to present the input

request in a more user-friendly manner. For example, we may prefer to have:

\Please enter an option: hOPi".

9



4.3.3 Term reduction

After a visual program (a term) is constructed we want to execute it using the

semantics. To do so, we apply the eval function de�ned in Section 4.2.

To start the scenario, �rst a calculator term must be created. This is done

in a term editor over CALC:

0

Enter

+

=

eval

In this editor, the eval button is de�ned to apply the \eval" function to the

CALC term constructed in it3:

eval

0
BBBBBBBBBBB@

0

Enter

+

=

; 0

1
CCCCCCCCCCCA

Now let us follow a scenario to see how the equations deal with input and

output during evaluation. Note that, at the time of evaluation the exact ap-

pearance of the calculator is determined. The actual ordering of the operations

is determined when the calculator term is constructed. The syntax, in fact,

permits any ordering or even repeated occurrences of the operations as long as

there are three operations. After the evaluation is requested, this calculator

term is continually rewritten driven by the input received.

3
The term editor supports the binding of a function from a language speci�cation to a

button.

10



The rest of the scenario shows the term in the editor as it is rewritten. The

equation number references are from Section 4.2. Applying the eval function to

the term, invokes an external-match due to the (i.e., � term) present in

equation [1], which presents the term to a user:

0

Enter

+

= hOPi

The meta-variable demands input from the user, who can syntactically choose

from a menu which presents the permitted operation or select an appropriate

subterm from the existing term. The latter choice means that the user can select

any operation from the calculator term. If the user selects Enter then the term

becomes the one on the left below, using which the eval-op function matches

equation [2] which invokes yet another I/O (the right term):

0

Enter

+

= Enter

0

Enter

+

= hNUMi

Now, in order to continue, a number must be provided. Considering that

the number 5 is entered, the rewrite of equation [2] can be completed, which is

another eval function matching equation [1] again.

0

Enter

+

= 5

5

Enter

+

= hOPi

Notice that the terms driven by input and output are presented in a win-

dow. Clearly, additional research is required to address the various ways that

intermediate terms as well as the input and output can be presented. In

the report [D�U96] we investigate how information could maintained (called

Share-Where maintenance) so that the initial look of the calculator is preserved

through the interaction. We have not discussed the issue of how certain window

control information can be incorporated.

11



5 Conclusions

Direct manipulation user interfaces consist of interactive widgets of various

kinds. Many of them are event based (assist in handling the various input

events) but a variety of them are geometry based [OJK95]. We are interested in

not only composing these geometry based widgets to build direct manipulation

user interfaces but also provide meaning to these compositions using equations.

To describe this we abstract away from event based user interfaces by assuming

a syntax based editor that helps build the desired \widgets".

We present a simple model for guiding user interaction, that with the help

of certain editor tools, and mechanisms for de�ning user short-cuts (some event

based \widgets") would result in practical user interfaces that are more exible

than ones of today | that only allow connectors between components of the

user interface while the semantics is speci�ed in a language (like C++ or C)

external to user interface speci�cation language.

Acknowledgements

We would like to thank Jan Heering and Arie van Deursen for their comments

and opinions on Section 3.

References

[BK86] J.A. Bergstra and J.W. Klop. Conditional rewrite rules: conu-

ence and termination. Journal of Computer and System Sciences,

32(3):323{362, 1986.

[D�U96] T. B. Dinesh and S �Usk�udarl�. Specifying input and output of vi-

sual languages. Technical Report P9610, Programming Research

Group, University of Amsterdam, August 1996. Extended version with

Share-Where maintenance; ftp://ftp.fwi.uva.nl/pub/programming-

research/reports/1996/P9610.ps.Z.

[Gra95] T.C. Nicholas Graham. Declarative Development of Interactive Sys-

tems. Number NR.243 in GMD-BERICHT. R. Oldenbourg Verlag,

Munchen/Wien, 1995. PhD Thesis; Technical University of Berlin.

[OJK95] Dan R. Olsen, Brett Ahlstrom Jr., and Douglas Kohlert. Building

geometry-based widgets by example. In Proceedings of CHI'95, 1995.

[�UD95] S �Usk�udarl� and T. B. Dinesh. Towards a visual programming envi-

ronment generator for algebraic speci�cations. In Proc. 1995 IEEE

Symposium Visual Languages, September 1995.

[�Usk94] Susan �Usk�udarl�. Generating visual editors for formally speci�ed

languages. In Proc. 1994 IEEE Symposium Visual Languages, Oc-

tober 1994. Available by ftp from ftp.cwi.nl:/pub/gipe/reports as

Usk94.ps.Z.

12


