
Supporting Information Consumers
by Search Agents in the World-Wide Web

Christoph G. Thomas, and Reinhard Oppermann

HCI Research Division (FIT.MMK)
GMD - German National Research Center for Information Technology

D-53754 Sankt Augustin, Germany
Tel.: +49 2241 14 2640/2703, Fax: +49 2241 14 2065
{Christoph.Thomas, Reinhard.Oppermann}@gmd.de

Abstract. Due to emerging technologies a wide area of network services has grown up around the
Internet: tools like World-Wide Web provide a massive amount of information. Being lost in space
and overloaded with information are two problems information consumers confront: there is more
information out there than a single consumer can manage. In consequence, finding information can
be frustrating and time-consuming: users need active support to determine if potentially useful
information exists, where the information is located, how to retrieve the information when it is
located, and how to use the information when it is retrieved.

To address and overcome problems of the WWW, we have designed and implemented a framework
to integrate agents into the use of the WWW. The agents filter information, initiate communication,
monitor events, and perform tasks. The agents rely on usage profiles to adapt their assistance to
specific users.

Keywords: User modeling, Intelligent user interfaces, Guided interaction and intelligent agents,
architectures and frameworks, Adaptable and adaptive interaction

1. INTRODUCTION

Due to emerging technologies a wide area of network services has grown up around the
Internet: tools like World-Wide Web (WWW) provide a massive amount of information [Krol
94]. Being lost in space and overloaded with information [Schick 90] are two problems
information consumers confront: there is more information out there than a single consumer
can manage. In consequence, new strategies are needed to deal with information spaces such as
the WWW: consumers need active support to determine if potentially useful information exists,
where the information is located, how to retrieve the information when it is located, and how to
use the information when it is retrieved.

One solution is that software agents actively support a user. The kind of tasks that agents
might perform in such systems is ranking from supporting the navigation and browsing process,
making the information retrieval easier, doing sorting and organizing (indexing) jobs for the
user, and filtering information in large data bases [Laurel 90].

We explore the usability and usefulness of that solution to reduce the information overload
problem. The usability will be improved when the existing functionality can be adapted to the
user’s specific needs. And the usefulness will be improved by extending WWW’s functionality.

Based on empirical studies of users and their problems in dealing with large information spaces
we have developed the system BASAR (Building Agents Supporting Adaptive Retrieval).

2. FEATURES OF BASAR

BASAR embeds software agents acting as personal assistants in the WWW. These agents offer
support by (a) adapting searching and filtering, and by (b) reducing and restructuring the access
space to active views as task-dependent personal information spaces.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA

AA
AA

WWW
Viewer

manage
perform task
prepare presentationshow result

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA

AA
AA

email
Tool

notify

Agent lifecycle
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA

AA
AA

B ASAR

B ASAR's environment

create

Figure 1: Interfaces of BASAR

BASAR provides users with an interface to create and manage agents—this is done with windows and dialog
boxes in the BASAR environment. Agents present their task results in a WWW viewer, for example MOSAIC, and
agents communicate through the user’s preferred method—for example, via email if the user is absent.

BASAR embodies the following characteristics [Thomas 95].

_ Software Agents: BASAR provides users with an environment for creating and using
agents that actively support them in locating, relocating, and filtering information they
desire (Figure 1). BASAR comes with a set of pre-defined agents (see Table 1); it is up to
the user to choose one of these agents from a menu or to create new agents by using an
agent editor. Active agents are listed in a window that informs the user about their ongoing
tasks.

_ Usage Profile: BASAR builds a model of the user (preferences, interests, and tasks) using
both explicit (asking the user) and implicit (observing the user) modeling techniques. This
is done to adapt the assistance specific to each user [Fischer 85, Krogsæter 94].

_ Active Views: BASAR provides users with a concept for creating personal information
spaces along a semantical meaning that is independent of the WWW-viewer (such as
MOSAIC or NETSCAPE). An active view is defined as a set of bookmarks belonging to the
same header in combination with a set of agents attached to it: <active view> = <bookmark
header> + <bookmark links> + <agents>.
The agents are responsible for keeping an active view manageable by adding, updating, and
removing information links. For example, agents make suggestions to add information links
to a view if these links have been visited often by the user in the past, agents notify the user
when information has been updated, or agents suggest removing links that have become
invalid. An active view is user-specific; its description as part of the usage profile allows
analysis of user’s actions on that view, for example, searching for, deleting, or adding links.

BASAR has been implemented for the WWW client MOSAIC under X-Windows in VisualWorks
2.0. The user normally interacts with WWW and MOSAIC. BASAR has access to the
functionality of MOSAIC, to the logfile of user actions, the usage profile, and to the distributed
Web space.

The user of BASAR deals with active views; agents work on these views, and the usage profile
makes the assistance of the agents specific to each user. To briefly summarize, these
characteristics will improve the usability and the usefulness of the WWW as follows:

_ Users get active support from the system; for example, agents notify the user about old,
new or updated information relevant to an active view. So far, hotlists and bookmarks are
passive repositories for information (links).

_ Users can delegate tasks to agents; for example, users can ask agents to look for new links
in the result list of a search process that are not stored in the user’s personal information
space. So far, users have to do that by hand.

_ Users can ask agents to perform periodical tasks; for example, agents can look for new
information on a specific server every week. So far, users have to do that themselves.

_ Users get uniform access to search engines with a knowledge base in the background
describing how the different search engines work, how to call them, the best time to call
them, and how relevant their results were in the past. So far, users have to remember that
every time they call a search engine.

Delegating tasks and supporting the browsing and searching process enable a user to (a) use
less time to search the same information space, or (b) search a larger space in the same time.
These represent two important strategies to reduce the information overload problem.

3. A SCENARIO: USING SEARCH ENGINES

The following scenario illustrates our ideas and may help to clarify the underlying conceptual
work. Suppose, a user’s task is to create a personal information space called ”lifelong
learning.” We assume that this information space will grow dynamically over time and become
a permanent information repositorium of all useful WWW links relevant to the area of lifelong
learning, including links to research institutions, grants, people, papers, and initiatives.

calls

..............

..............

..............

..............

send result

filter/
select

Search
Engine

Figure 2: Searching in the World-Wide Web without BASAR

3.1 How Information Consumers Use Search Engines

One usual way to start with the WWW is to call one (or more) search engines that are
requested to return links relevant to a given search key. It is then the user’s task to filter the
result (Table 1) by hand (Figure 2). As search engines are still the most popular tools to find
information in the Web space, we were interested in how people use these tools. Therefore, we
developed a questionnaire about search engines and distributed it to a GMD newsgroup and to
de.comp.infosystems. The most important results (based on 22 replies) are:

Users tend to use the same search engines again and again no matter what they are looking for,
e.g. persons, institutions, software, publications, etc.—despite the well-known fact that
different search engines use different techniques and algorithms to analyze WWW pages. Once
users get used to one or more specific search engines they stay with them.

Three-fourths of the respondents repeat a search some time later on with the same keywords.
This is done for almost two reasons: either people want to know whether some new
information relevant to the search key has been added to the World-Wide Web or people try to
find some lost information link again.

Once a search engine returns a results, it is up to the user to select relevant information links
and interpret the results what depends on user’s time and experience. Most used selection
criteria for links are, for example, the order suggested by the search engine, a geographical
order, or the reference string. Users tend to select links in search results in different manner
than they are displayed to the user.

Most users store results from search engines that seem to be relevant for their purposes as
bookmarks in their bookmark list. Managing bookmarks and bookmark lists is another very
important task for information consumers to deal with information overload, for a discussion
see [Thomas 96].

But difficulties that come with search engines are not only restricted on how to use the results,
they even start when a search engine has been selected.

_ Accessibility: Sometimes search engines are not accessible, either due to a shutdown, too
much net traffic in general, too much network accesses to the search engine at query time,
or other facts. In consequence, the user has to call the search engines again and again until
success is achieved.

_ Validity : When results are returned, users need to know what links are still valid (links
becoming invalid over time is a general problem for the WWW). For example, a (randomly)
selected entry from the results of the search engine RBSE’s URL database leads to an
unexpected error:

_ Multiplicity : Users need to know which links appear in more than one search result if
more than one search engine was involved in the search process. In consequence, users
have to compare the different results by hand and remove duplicates.

_ Already known: Users wants to know which links are already stored in their personal
information space (e.g. described through bookmarks). In consequence, users have to
compare the links in their personal information space with the new ones.

_ Minor relevance: Users would like to easily identify the links they have already visited and
considered earlier to be of no or minor interest. In consequence, users spend annoying time
looking at sites that are not worth looking at.

_ Iterative process: There is no support in doing a search periodically. In consequence, users
have to call search engines explicitly every time they want to update their personal
information space.

Name of Search Engine Result for search key ”Lifelong Learning”

NIKOS 2

RBSE’s URL database 100 (number restricted by user)

Jumpstation II 0

Lycos Found 14434 documents matching at least one search term. Printing only
the first 15 of 14434 documents ...

WebCrawler found 102 documents, returned 25

Table 1: Results of Search

This table shows the result of the use of five different search engines that have been called with the keyword
”lifelong learning.” The quality and the quantity of the results is very different among the search engines. This
small experiment was done at the end of May 1995.

The user has to be aware of these problems when using search engines. To sum up, these tests
confirmed that users have difficulties in making efficient use of search engines.

3.2 WWW—with BASAR

In consequence, we support the search process by introducing agents, usage profiles, and
active views. First, the user defines an active view called ”lifelong learning.” This is done by
creating the new active view in a simple dialog box, see Figure 3.

The call and the results of a search process are stored in the usage profile together with the
actions the user performed on these results. The search agent evaluates the success of a
specific search and uses it later for another search task (the support of a search agent improves
with the number of its usages). The extracted information is used when the user calls the search
agent again. If the search engine returns a result, the search agent filters all the information
links according to the usage profile, for example, telling that the user is most interested in
information links coming from .edu or .com server sites.

Figure 4: Creating the Active View ”Lifelong Learning”

The creation is done in BASAR ‘s ”Edit View” window by selecting the ”add view” button that asks for the new
view’s name. Once created, links are added to that view by selecting ”add pages.” In this example, the new
view starts with two links.

Second, the user creates an agent to work on that view. The type of agent that is relevant for
this scenario is called a search agent (which is one of the predefined agents that come with
BASAR, see Table 2). The search agent mediates between different search engines and the user
(Figure 4). Its behavior is influenced by the information contained either in the logfile or in the
usage profile.

log
file

calls

Search
Engine

Search
Engine

Search
Engine

........
......

........
......

........
......

........
......

notifies

updates

..............

..............

..............

..............

..............
..............

..............
..............

Personal
Information

Space

Usage
Profile

calls

send result

Figure 4: Searching in the World-Wide Web with BASAR

The logfile contains the global history, that is the set of links the user has visited. But the
logfile does not know anything about the semantical meaning of a WWW page, such as that it
describes the result of a search process and may contain a set of relevant links asked for by the
user. And even the logfile does not contain the information that a search process has been
started. This is the point where the usage profile with its three parts (domain-specifics, task-
specifics, and user-specifics) comes in, see Figure 6.

The domain-specifics part (which is the network knowledge base) tells the agent (a) how to
call search engines, (b) when is the best time to call them, and (c) to try to call a search engine
later on again until success if the request fails. This reduces the ”accessibility” problem
mentioned above.

Figure 5. Creating a Search Agent

The dialog box on the left provides users with a common interface to the most popular search engines. The
agent will call the selected search engines until reaching success. The window on the right pops up after
selecting the button ”filter preferences using new.” It presents a table of the user’s preferences on how to sort
the search results.

The task-specifics part tells the agent (a) to delete multiple occurrences of the same links if the
user has selected more than one search engine (reduces the problem of ”multiplicity”), and (b)
to compare the result links with the links already stored in the user’s personal information
space (reduces the ”already known” problem).

Due to an entry in the user-specific part of the usage profile, the agent is able to evaluate the
relevance of former search result links for the user: if the user did look at a link but did not
store it, it is supposed to be of minor relevance.

And last but not least, search agents, as all the other types of agents in our system, can perform
their tasks periodically, which reduces the ”iterative process” problem.

The results of a search process can be ordered by different criteria, such as country code,
server sites, document type, or visited pages. The type of ordering is specified either implicitly
by analyzing how the user dealed with search results of former searcher or, explicitly, by
editing a dialog window from the usage profile, see Figure 5.

3. THE CONCEPTUAL FRAMEWORK

We have adopted indirect management [Kay 90], see Figure 6, as the fundamental model of
interaction because it integrates agents supporting users in doing their tasks at hand. Both
users and agents initiate communication, monitor events, and perform tasks instead of having
unidirectional interaction via commands and/or direct manipulation.

Application

User

Agent

interact

communicate

interact

Figure 6: Indirect Management

The agent acts as an additional component to the user and the application. It depends on agent’s tasks whether
it is modeled more closely to the user, to the application or to the interface.

The purpose of the agent is to assist the user and to adapt this assistance to be specific to each
user. A user should be able to delegate (sub-)tasks to the agent, whereas the agent should be
able to infer the need for user-specific support during a problem-solving or task-performing
process.

This model leads to a conceptual framework for integrating software agents in the WWW, see
Figure 7. An ”ideal” agent support (i.e. improving both usability and usefulness) needs
knowledge about the interaction between the user and the system (for user-specific support),
the functionality of the system itself (for task-specific support) and the problem solving process
within the application domain of system (for domain-specific support). These different types of
knowledge are covered in the usage profile.

For the purpose of BASAR, we have created three specific classes of an agent: interface agents
(that know to communicate with the user), task agents (that know to perform a task), and
network agents (that know to communicate across the network).

Figure 7: Basar Architecture

Agents have access to both the functionality and the resources of the application by its programmer interface.
Also, agents have to communicate with the user. This is done through the agent’s user interface, which extends
the original user interface of the application.

Interface agents mediate between the user and task or network agents, communicating through
the user’s preferred method—for example, via email if the user is absent or via a blinking icon
if the user is present. If a network or a task agent wants to contact the user, it requests an
interface agent. The interface agent’s behavior—that is, allowing, deferring, or denying
contact—is defined and determined by the usage profile. A subclass of an interface agent is the
view agent, which is responsible for presenting an active view to the user. The view agent
constructs a default representation of the active view by getting a view description from the
usage profile.

Task agents support adaptive filtering, the creation of active views, and locating and accessing
relevant information. Some examples of build-in task agents are listed in Table 2.

Network agents are implemented on a client/server architecture. Based on their knowledge of
the network—location of search engines, available server, time zones, different types of server
sites such as .com, .edu, .de—network agents ship task agents to appropriate WWW sites.

The user interface of BASAR hides the distinction between interface, task, and network agents
from the user; the user simply interacts with agents through email, icons, dialog boxes, or
within active views. The top-level window of BASAR informs the user about all active agents
with a short description of their task. It also provides the user with functionality to create
active views (see, for example, Figure 3), to edit the usage profile, and to create agents
through an agent editor, for example, giving the agent a name, specifying whether the agent
should do a single or a periodical task, selecting the task to perform, and allocating an active
view to the new agent for presenting the results.

5. RELATED WORK

Software agents technology is on its way to being used in commercial products, for example,
for workflow and network management, in messaging, and in information retrieval [Guilfoyle
94]. For example, Apple’s APPLESEARCH software enables the creation of personal search
agents (”Reporters”) to search incoming mail messages and documents from on-line services
[Roesler 94], or TELESCRIPT lets users send executable programs in the form of agents through
the network [Wayner 95].

Predefined Agents Purpose

clean-up agent takes the hotlist, looks for dead links, asks the user to delete hotlist
entries not selected for a period of <n> months

search agent supports users in the use of search engines and their results

filter agent compacts information and adapts it to user’s need according to the
usage profile

monitor bbs agent
(bbs = bulletin blackboard system)

this agent monitors a Web page used as a blackboard for an active
group view

Table 2: Built-in Task Agents

In the WWW, search engines, also called Internet Agents [Indermaur 95], are the first attempts
to integrate agent technology. But, as seen in this paper, their concept differs in many ways
from the concept of the assistant agents of interest to us. Another area with agent technology
in the WWW has been named ”collaborative information filtering,” a technique to support
information consumers in finding relevant information by making use of what others have
already found and evaluated [Maltz 95]. For example, HOMR [Shardanand 95] is a
collaborative information-filtering system based on learning agent technology [Maes 94].

In contrast to search engines, systems such as HOMR build a user profile, called an interest
profile, and make personalized recommendations based upon values assigned by other people
with similar tastes. Such systems can be used for any database, which may be of great
advantage on the one side, but on the other side they do not contain, like BASAR, WWW-
specific knowledge, analyze user’s dialog history, and build a usage profile that supports the
managing of WWW personal information spaces. To our knowledge, BASAR is a unique
attempt to integrate agent technology with user modeling techniques into the WWW.

6. DISCUSSION

BASAR is the newest prototype in our ongoing research efforts to explore the embedding of
intelligent agents and user modeling techniques into domain-oriented systems. BASAR

continues the work of an earlier implemented system, FLEXCEL [Thomas 93, Oppermann 94],
as an adaptive user interface extension for the spreadsheet program Excel® from Microsoft.

In our conceptual framework, we consequently have adopted indirect management as the
fundamental metaphor for human-computer communication, which raises numerous
conceptual, technical, and social issues. These issues are a consequence of the mixed-initiative
dialogs made possible by the agents. With BASAR, we are investigating these issues for the
WWW as a testing substrate of a new type of information space. The conceptual issues we are

investigating with BASAR include control of initiative and intervention, and focus of attention.
The technical problems include the embedding of agents in the WWW as an existing
information space, their communication with WWW clients such as MOSAIC, the use of
existing WWW tools such as search engines, user manipulation of agents through an agent
editor, activation of agents, and presentation of agents and their results. Social issues addressed
by our research include the new role distribution between user and agents, namely, the
embedding of agents in new types of information systems that complement information access
with information delivery.

7. FUTURE WORK

The future work on BASAR has mainly two directions: (a) identifying its shortcomings by
assessments and empirical evaluations, and (b) extending the concepts of active views and
agents to support groups of users.

One shortcoming of our prototype is that it needs two systems, a WWW viewer such as
MOSAIC and a SMALLTALK environment for the creation and control of the agents and the
active views. A much nicer idea is to make the basic features of BASAR directly accessible
through any viewer of the WWW, as is done, for example, in HOMR. This could simplify the
installation and loading of BASAR and its communication with agents and views.

Until now, BASAR has been for single users. To make it suited for a group of users we started
to extend active views to active group views. For example, the view on ”lifelong learning”
could be used by the members of different research groups as a joint information repositorium.

REFERENCES

[Fischer 85] G. Fischer, A.C. Lemke, Th. Schwab, Knowledge-Based Help Systems. Human
Factors in Computing Systems, CHI’85 Conference Proceedings (San Francisco, CA),
ACM, New York, 1985, 161-167.

[Guilfoyle 94] C. Guilfoyle, E. Warner, Intelligent Agents: the New Revolution in Software.
Ovum Limited, London, UK, 1994.

[Indermaur 1995] K. Indermaur, Baby Steps. BYTE, March 1995, 97-104.

[Kay 1990] A. Kay, User Interface: A Personal View. In: B. Laurel (ed): The Art of Human-
Computer Interface Design, Addison Wesley Publishing Company, Inc., 1990.

[Krogsæter 94] M. Krogsæter, R Oppermann, C.G. Thomas, A User Interface Integrating
Adaptability and Adaptivity. In: R. Oppermann (ed.): Adaptive User Support. Lawrence
Erlbaum Associates 1994, 97-125.

[Krol 94] E. Krol, The Whole Internet. User's Guide & Catalog. Second Edition. O'Reilly &
Associates, Inc., Sebastopol, CA, 1994.

[Laurel 90] B. Laurel, Interface Agents: Metaphors with Character. In: B. Laurel (ed): The Art
of Human-Computer Interface Design, Addison Wesley Publishing Company, Inc., 1990.

[Maes 94] P. Maes, Agents that Reduce Work and Information Overload. CACM, July 1994,
37, 7, 3-40.

[Maltz 95] D. Maltz, K. Ehrlich, Pointing The Way: Active Collaborative Filtering. Mosaic of
Creativity, CHI’95 Conference Proceedings, ACM, New York, 1995, 202-209.

[Oppermann 94] R. Oppermann (ed.), Adaptive User Support. Lawrence Erlbaum Associates,
Publishers, Hillsdale, New Jersey, 1994.

[Roesler 94] M. Roesler, D.T. Hawkins, Intelligent Agents - Software Servants For An
Electronic Information World (and More!). ONLINE, 18, 4, 1994, 1-32.

[Schick 90] A.G. Schick, L.A. Gordon, S. Haka, Information Overload: A Temporal
Approach. Accounting Organizations and Society, 15, 3, 1990, 199-220.

[Shardanand 95] U. Shardanand, P. Maes, Social Information Filtering: Algorithms for
Automating ”Word of Mouth”. Mosaic of Creativity, CHI’95 Conference Proceedings,
ACM, New York, 1995, 210-217.

[Thomas 93] C.G. Thomas, Design, Implementation, and Evaluation of an Adaptive User
Interface. Knowledge-Based Systems. Special Issue on Intelligent Interfaces. 6, 4, 1993,
230-238.

[Thomas 95] C.G. Thomas, Basar: A framework for integrating agents in the WorldWide Web.
IEEE Computer, 28, 5, 1995, 84-86.

[Thomas 96] C.G. Thomas, G. Fischer, Active Views: Managing Personal Information Spaces
in the World-Wide Web. submitted to CHI´96, Vancouver, Canada, April 1996.

[Wayner 95] P. Wayner, Free Agents. BYTE, March 1995, 105-114.

