
Design representations and development support for user
interface adaptation

Constantine Stephanidis, Demosthenes Akoumianakis, and Anthony Savidis

Institute of Computer Science
Foundation for Research and Technology-Hellas

Science and Technology Park of Crete
P.O. Box 1385, GR-71110 Heraklion, Crete, Greece

Tel.: +30-81-391741, Fax : +30-81-391740
E-mail: {cs, as, demosthe}@ics.forth.gr

Abstract

With the advent of Graphical User Interfaces (GUIs) and the advances of input/output technologies,
there has been a shift of perspective, from user interface programming tools to environments for
designing interaction. This is partly attributed to technological maturity and partly due to the
increasing requirement to support a need-driven and user-centered protocol for design, development
and implementation of interactive systems. This paper investigates the architectural shortcomings of
existing user interface development systems and environments with respect to supporting adaptation
of a user interface and discusses methods, techniques and tools that are needed to empower user
interface designers. In particular, the paper describes a high level architecture comprising user
interface software components that can provide the required design, development and implementation
support that is needed to facilitate user interfaces for different user groups with diverse requirements
abilities and preferences.

1. INTRODUCTION

The concept of User Interfaces for All has been proposed (Stephanidis, 1995; Stephanidis et
al., 1995) as a vehicle to efficiently and effectively address the numerous and diverse problems
related to the accessibility of interactive applications in different contexts of use. Currently,
there are no development tools to practically support the construction of User Interfaces for
all. Towards this objective, the notion of unified user interface development has been
introduced (Stephanidis et al., 1996) with the objective of supporting platform and user
independent interface development. A unified user interface development platform requires
that only a core of the user interface is developed, while the platform and user-specific
interface properties can be automatically handled by special purpose user interface software
tools. These tools can automatically manage the platform specific issues and adapt the
resulting dialogue to the particular user (group).

In this paper, we are primarily concerned with the latter property of a unified interface
development platform, namely the issue of supporting the adaptation of the user interface to
the target user (group). The need for adaptation is evident when one considers the diverse
needs and requirements of different user groups, the wide availability of alternative and non-
conventional input/output technologies, the compelling need for more user friendly products
as well as the recent trends towards universal accessibility and greater usability of interactive

applications. In this context, adaptation of the user interface has been found to be a quality
attribute of a design (Benyon et al., 1993), as well as a pre-requisite for accessibility
(Stephanidis et al., 1995; Stephanidis, 1995). As a consequence, future user interface design
environments will increasingly be required to support the articulation of plausible adaptations
at the semantic, syntactic and lexical levels of interaction in order to allow for different
scenarios of use and to support selection of appropriate semantic properties, user task
sequencing, interaction styles, input/output devices and interaction techniques, given the
intended user groups and the tasks that they should perform with the user interface.

There have been several studies investigating the numerous dimensions of adaptation in
interactive software systems (for a review see Dieterich et al, 1993), namely, what constitutes
an adaptation constituent, the level and timing of adaptation, the controlling agent, the type of
knowledge that is required to arrive at meaningful adaptations, etc. Nevertheless, despite the
substantial contributions of these efforts to the study of adaptation, there are still several issues
that need attention, if user interface adaptation is to be adequately served by designers and
developers of interactive software applications.

Towards this objective, it is necessary to investigate and extract a reference model for user
interface architectures in order to understand the range of adaptable and adaptive behavior
that is needed and the way in which it can be effectively supported throughout the user
interface life cycle (i.e. from the early design phases to implementation and maintenance). In
the past there have been several attempts to extract a reference model from concrete user
interface architectures in order to classify existing prototypes and to guide the construction of
user interface software. The best known architectural abstractions of user interface software
include the Seeheim (Ten Hagen, 1990), PAC (Coutaz, 1991), ALV, MVC and Arch/Slinky
models (The UIMS Tool Developers Workshop, 1992). However, they do not consider user
interface adaptation aspects. Moreover, in the literature on User Interface Adaptation,
architectural abstractions are almost missing. Mostly, particular prototype architectures are
reported (see Cote, 1993; Sherman et al., 1993; Zimek, 1991; Anchieri et. al., 1991;
Sukaviriya et al., 1993, etc), instead of abstract models. Even those however, limit their scope
to address adaptivity which constitutes only one dimension of user interface adaptation in
interactive software systems (see next section).

In this paper, we narrow the scope of investigation to consider the type of tools that are
needed in order to support the adaptation of user interfaces at the lexical level of interaction to
accommodate the diverse abilities of different user groups, including disabled and elderly
people. In this context, adaptation is considered in a broad sense, as a technique supporting
the specification of lexical elements of interaction in such a way that the resulting user
interface is accessible and usable by the intended user group. Our objective is to define user
interface software components which provide designers and developers with the required
support for articulating adaptation constituents and designing, developing and maintaining the
user interface, as opposed to arriving at dedicated and programming-intensive solutions. This
objective differs from other approaches and efforts aiming to consider and propose conceptual
models for the study of adaptation in human computer interaction (cf. Benyon, 1993). Instead,
the normative perspective adopted in this paper is that support for user interface adaptation
should be systematically embedded in high level user interface environments and unified
development platforms, in order to empower designers and developers to articulate adaptation
scenarios and corresponding contexts of use so as to facilitate accessible and more usable
interactive systems.

This paper reviews recent efforts towards adaptation of interactive systems and describes a
new user interface software architecture which provides a unifying view of adaptation
constituents and a high level user interface development platform supporting adaptation. The
emphasis is on the software components and tools comprising the platform, their properties
and protocol of communication. An implementation of this user interface architecture which
supports lexical adaptability of attributes of abstract physical interaction object classes is then
presented followed by a discussion of the potential impact of current efforts and plans for
future work.

2. OVERVIEW OF RELATED WORK

In the context of the present work, adaptation comprises both adaptability and adaptivity.
The term adaptability refers to a technique which is supported by the user interface
development platform, as opposed to a programming-intensive characteristic of an interactive
application. Consequently, it implies design and development support for the automatic
assignment of lexical user interface constituents according to the needs, abilities,
requirements and preferences of a target user group. Such a technique can be supported by a
dedicated user interface tool which assists the designer of the user interface to select
plausible design options and decide on maximally preferred ones so as to ensure the
accessibility of the user interface by the target user (group). It is important to note that the
above definition for adaptability differs substantially from other definitions commonly

encountered in the relevant literature
1
, as it implies (i) design and development support for

the automatic adaptation of a user interface to the needs, abilities, requirements and
preferences of a target user group. Additionally, it implies a range of adaptation constituents
which are beyond mere parameterization of the application’s functionality. On the other
hand, adaptivity refers to a different dimension of adaptation which takes place at run-time
(i.e. during an interactive session with an application). This type frequently involves
adaptations of the syntactic layer of the user interface (i.e. identification of common patterns
of use and simplification by means of macros). Our account of user interface adaptation
includes both adaptability and adaptivity as introduced above, unless explicitly stated
otherwise.

Research on adaptive and adaptable interfaces in the past has suffered from a lack of
supporting tools which allow an interface to be easily created, modified and maintained. Also,
adding adaptability and/or adaptivity to user interfaces so far has not been supported
comprehensively by any high level user interface system or environment. Some of the early
attempts to construct adaptable systems are OBJECTLENS (Lai, et al., 1988), BUTTONS
(McLean et al., 1990), Xbuttons (Robertson et al., 1991). All these systems allow the user to
modify certain aspects of their interactive behaviour while working with them. More recently,
the AURA project (Adaptable User Interfaces for Reusable Applications) of the ESPRIT-II
Programme of the Commission of the European Union has investigated thoroughly the issue of
adaptability (Koller, 1993) and the underlying architectural abstractions for adaptable systems.
AURA’s objective was to define tools which would allow the specification of adaptable
dialogue behaviour during the early design phases and the coupling of such tools with high

1
The common definition for an adaptable system refers to a system that provides the user with tools that make
it possible to change the systems characteristics (Opperman, 1994). A similar definition for adaptability is
found in the work of Fischer (Fischer, 1993).

level user interface development systems (i.e. user interface management systems). Towards
this objective, AURA provided implementations of dialogue nets as well as an event-driven
dialogue definition language (EDDDL) with pre- and post-conditions. Dialogue nets allow the
specification of adaptable dialogue behaviour by means of graphical representation. This
graphical representation can be transformed into the notation of EDDDL which is tool-
independent and can be used for dialogue specification in user interface management systems
(Koller, 1993).

Adaptability has also been the chief objective in the development of the PODIUM system
(Sherman et al., 1993). PODIUM's purpose is to show that a User Interface Management
System (UIMS) which is supplied with a user interface automatically designed for a large and
diverse user community can tailor that user interface automatically for each of many subgroups
of a large user community. The only knowledge that the system uses to complete this task is
the user characteristics that divide the community into user subgroups and its experience with
users who have tailored user interfaces previously ..." (Sherman et al., 1993). According to the
authors, the architecture of PODIUM resembles very much the structure of a conventional
UIMS. In PODIUM the User Interface Generator is used to design and implement the user
interface. The Interaction Handler arbitrates all interaction between the user and PODIUM
(which includes allowing the user to custom-tailor the user interface).

In addition to the above research efforts towards adaptability, a number of systems have been
developed to investigate the complementary objective of adaptivity. The state of the art in
adaptive user interfaces includes OPADE (DeCarolis et al., 1994), AIDA (Cote, 1993), UIDE
(Sukaviriya et al., 1993), as well as the results of several projects at national and international
levels, such as AID (Browne, 1993), FRIEND21 (Okada, 1994). In addition to the above
architectures for adaptable and/or adaptive user interfaces, there have been a few other
proposals which, however, are more narrow in scope. Zimek in (Zimek, 1991) described the
design of an architecture for adaptable and adaptive UIMS in production. His architecture
comprises four functional units, namely, a user modeling component, a task modeling
component, a strategy component and a UIMS. One of the interesting aspects in Zimek's
architecture is the strategy component. This component is responsible for giving dynamic user
support by manipulating the dialogue according to the individual competence and the special
problems of the user. An alternative architecture has been described by Arcieri and colleagues
in (Arcieri et al., 1991). They propose a functional architecture for a UIMS integrating
application-independent user modeling capabilities. Finally, there has been substantial work
towards the development of dedicated tools and techniques driving and supporting adaptive
behaviour, such as GUMS (Finnin, 1989), UM (Kay, 1995), UMT (Brajnik et al., 1994),
BGP-MS (Kobsa et al., 1995), PROTUM (Vergara, 1994), and (Orwant, 1995).

The main shortcomings of existing work towards adaptable and adaptive systems is that they
do not provide comprehensive support for user interface adaptation in the context of high level
development environments and tools. Even the AURA project which comes closest to support
adaptation through tools does not account for such details of user-computer interaction.
Moreover, the range of adaptation constituents considered do not account for basic design
elements such as the choice of input/output devices, the interaction techniques, or other
attributes of abstract interaction objects, such as the various types of feedback (i.e. initiation,
interim, completion), access policy, navigation policy, topology etc. As a result, these efforts
do not provide the support required to address user interface adaptations from the initial
design and development phases to implementation and maintenance. In some cases, this

limitation is directly attributed to the underlying approach for supporting adaptation, while in
other cases it is a question of tools available and the underlying development platform.

3. TOWARDS A SOFTWARE ARCHITECTURE FOR ADAPTABLE AND
ADAPTIVE USER INTERFACES

In this section, our emphasis will be on progressively developing the components of a new
architecture which can support both adaptability and adaptivity of the user interface. In what
follows, it is assumed that the application and user interface implementation are separate
concerns, while user interface development is to be supported by a high level user interface
tool.

3.1. Architectural abstractions supporting adaptation

It is important to note that both adaptability and adaptivity of user interfaces may be
hardcoded, which implies that the user interface code has a pre-set structure. Typically, in such
cases, adaptability and adaptivity are both built into the user interface code through rules
which are local to the user interface and predetermined. This means that in case that the
system’s run-time behavior requires enhancements, either in the form of additional adaptability
or adaptivity rules, the user interface code would have to be upgraded and recompiled. Of
course modifications of the target application may also be required. It follows, therefore, that
such architectures lead to monolithic systems which are likely to be large (in lines of code) and
not easily modifiable.

An alternative approach would be to introduce the adaptability and adaptivity rules as
orthogonal to the user interface, but not part of it. This is to say that such rules are not
embedded in the user interface code, but they can be collected as supplementary information
(in files) which can be consulted by the run-time libraries of the user interface development
toolkit (see Figure 1). The architecture described in the diagram of Figure 1 is clearly more
flexible in the sense that the rules determining adaptable and adaptive behavior of the user
interface are not part of the user interface code. Instead, the user interface development
toolkit, in addition to the other functions that it carries out, it also acts as an interpreter of
adaptation decisions established either manually or by an external module (see below). This
requires that the user interface development toolkit should support an explicit model of the

adaptable and adaptive constituents which can be
determined by the rules. Such abstractions are
always desirable in user interface software and have
been integral components of high level user
interface development environments.

The only concern regarding the architectural
abstraction depicted in the diagram of Figure 1 is
the way in which the adaptability and adaptivity rule
sets are produced. Figure 1 assumes that such rules
may be hard-coded or editable through templates,
but this may lead to ad hoc and non-systematic user
interface designs. More specifically, tools can be
developed to support the automatic construction of
appropriate adaptability and adaptivity rules

Figure 1: Alternative architecture for
supporting adaptation.

according to the user's abilities, knowledge, interests as well as any preferences of specific
adaptation constituents (i.e. interaction style, dialogue syntax, input/output devices, interaction
techniques, etc). This observation leads to an enhanced architectural abstraction which is
depicted in the diagram of Figure 2. In this revised architecture for adaptable and adaptive
user interfaces, three tools have been introduced, namely, two design assistants that support
the automatic generation of adaptability and adaptivity rules respectively, and a user interface
development toolkit which is responsible for realizing the adaptable and adaptive user interface
on a target platform (i.e. MS-Windows, X-Windowing system, etc).

In the following two sections, the latter architectural abstraction for adaptable and adaptive
user interfaces is further elaborated by exemplifying the communication protocols between the
user interface development system and the two modules for adaptability and adaptivity. It is
assumed that both the user interface development system and the two modules for adaptability
and adaptivity seek to adapt abstract physical interaction objects. Such objects encapsulate
everything they need (i.e. appearance, placement, behavior and state) in terms of attributes
(i.e. size, width, topology, accessPolicy, interactionTechnique,
inputDevice, interimFeedback, etc). Consequently, both adaptability and adaptivity
concern the automatic instantiation of abstract physical interaction objects by means of
adapting their attributes.

3.2. Communication protocol between the user interface development tool and the
adaptability module

In order to support adaptability, the user interface development system requires knowledge
about the adaptable user interface constituents. This knowledge allows the tool to properly
instantiate an abstract physical interaction object into a concrete interaction object (e.g. an X
Windows system menu). Consequently, the role of the adaptability module is to supply as
much as possible of this knowledge. To achieve this, the adaptability module may be executed
by the designer of the interface, before the development of the user interface commences, to

Figure 2: Rroposed architecture for adaptable and adaptive user interfaces

compile an adaptation design scenario according to the user’s abilities, requirements and
preferences. During user interface development, the run-time libraries of a user interface
development toolkit may consult the decisions comprising the adaptation scenario, in order to
properly realize the adaptable properties of abstract interaction object classes on a target
platform. In this respect, the user interface development process is separated from the design
phase (i.e. orthogonality), since the user interface development system may be used by the user
interface developer after the completion of the task of the adaptability module. As an example,

let us consider the development
of a simple user interface which
involves the construction of a
menu. Before the developer
implements the interface with
the user interface development
toolkit, the adaptability module
is used to compile a file
containing maximally preferred
interface adaptability rules. Such
rules may follow the format
depicted in Table 1. During user
interface development, the
developer uses the user interface

development toolkit to implement the user interface (i.e. select the abstract physical interaction
object classes which will be used). The run-time libraries of the UI toolkit utilise the
information of Table 1 to adapt accordingly the details of the interaction and implement the
user interface on the target platform. In this way, the menu is automatically adapted according
to the user's requirements, abilities and preferences. The communication protocol described
above is summarised in the diagram of Figure 3.
3.3. Communication protocol between the user interface development tool and the

adaptivity module

Having briefly reviewed the communication protocol between the user interface development
toolkit and the adaptability module, this section will briefly discuss a possible communication
protocol between the user interface development toolkit and the adaptivity module. However,
before this protocol is detailed, it is perhaps appropriate to consider the meaning of adaptivity
in this context. Let us assume that the user interface developer is to construct a list containing
textual items, whose size of the selection set is not fixed, but dynamically determined by the
application. It follows, therefore, that the exact look and feel of the list cannot be determined

Menu.input_device=keyboard
Menu.inputTechnique=indirectPick2D
Menu.output_device=braille&speechSynthesiser
Menu.outTechnique=tactileTechnique
Menu.on_BrailleLines=2
Menu.on_BrailleCells=80
Menu.interim_feedback=speech
Menu.on_audioVoice=male
Menu.on_audioVolume=4
Menu.on_audioPitch=99
Menu.fontFamily=helvetica
Menu.topology =horizontal
Menu.access_policy=byKeyboard

Table 1 : Hypothetical lexical adaptability rules

Figure 3 : Communication protocol for lexical user interface adaptability

unless the application specifies the size of the selection set. Moreover, although the
adaptability module rulebase may have a clause stating that in case the size of the selection set
is larger than 25 items, the list should be contained within a scrolling window, no adaptability
rule is deducible because the size of the selection set is not known at design time.

This is a typical case of adaptivity requiring that decisions on the adaptation of attributes of
interaction objects be taken at run-time (i.e. while the user interface and the application are
running). To handle this issue, the communication protocol introduced previously needs to be
slightly revised. More specifically, whereas in the case of adaptability the user interface
development toolkit was merely interpreting the adaptability rules before instantiating an
interaction object, in this case it should feed the adaptivity module with data (i.e. size of the
selection set) so as to enable the latter to fire the appropriate adaptivity rule. This slightly
revised communication protocol is depicted in the diagram of Figure 4.

4. IMPLEMENTATION OF A USER INTERFACE DEVELOPMENT
PLATFORM TO SUPPORT THE DESIGN AND IMPLEMENTATION OF
USER-ADAPTED INTERFACES FOR DISABLED USERS

The above architectural abstraction has been used to design and implement a user interface
development platform which supports user adapted interface development for disabled users.
The platform comprises a number of tools which implement the properties of the
aforementioned architecture. Currently, our developments have focused upon the
implementation of tools which determine and apply adaptations at the lexical level of
interaction. More specifically, a tool called USE-IT has been implemented which develops a
semantics of adaptation at the lexical level and automatically constructs a lexical specification
scenario depicting maximally preferred lexical adaptability rules so as to ensure accessibility of
the target user interface by the intended user group. In addition, novel user interface
development toolkits have been constructed supporting the development of visual and non-
visual interaction, while at the same time, providing developers with the required support to
interpret and apply the lexical adaptability rules to implement a user-adapted interface.

Figure 4: Communication protocol to support adaptivity

The reason why our current efforts have been concentrated on providing support for lexical
adaptability is due to the fact that this level of adaptability is required to ensure the
accessibility of the user interface. In particular, it is claimed that if the development tools can
support the level of abstraction required to enable designers and developers to adapt non-
trivial attributes of lexical interaction (such as input device, input interaction technique, output
device, output interaction techniques, access policy, navigation policy, topology, feedback,
etc), then it is possible to develop interfaces which are automatically adapted to the user’s
needs, requirements, abilities and preferences. To this effect, the tools developed thus far
provide support for visual and non-visual interaction in two graphical environments, namely
MS-Windows and X-Windowing system by means of integrating toolkits with enhanced or
alternative (in the case of non-visual interaction) interaction capabilities.

Another distinction that needs to be made is the emphasis on adaptability as opposed to
adaptivity. This is due to the compelling need to consider adaptations during the early design
phases as otherwise no accessibility of the user interface by the target user group can be
ensured. Consider for instance an adaptive user interface which can adapt certain dialogue
characteristics, based on assumptions about the users drawn at run-time (i.e. during an
interactive session). Such a facility is not useful in the context of disabled user groups, because
it takes no account of the fundamental problem of accessibility. In other words, if no
interaction can take place, due to some disability, no assumptions can be drawn and therefore
no adaptation can be practically supported. Consequently, adaptation is concerned with both
initiating and sustaining interaction. In this sense, adaptability is a pre-requisite for adaptivity,
and needs to be addressed explicitly.

Consequently, the approach to supporting adaptations, which has been followed thus far, can
be summarised as follows:

I. User interface adaptation rules are compiled by the USE-IT tool which reasons about
adaptation constituents, selects plausible adaptations and decides on maximally preferred
ones, through the unification of constraints pertaining to the lexical level of interaction
(i.e. constraints related to the device availability, the user characteristics and the task that
is to be performed with the user interface).

II. User interface adaptation rules are subsequently interpreted by the run-time modules of the
underlying high level user interface development toolkit with which the user interface is to
be implemented so that adaptations are instantiated onto a target technology platform.

In this manner, adaptation of the lexical layer of interaction is automatically supported during
the initial design and development phases of the user interface.

4.1 Adaptation Constituents

In this approach, adaptable interface constituents are the attributes of abstract interaction
object classes. In the recent literature (Myers, 1990; Bodart et al., 1993), the term abstract
interaction object (AIO) has been associated with several properties, briefly summarised as
follows: (a) AIOs are application domain independent; (b) they encapsulate all the necessary
interaction properties (i.e. appearance, placement, behavior, state, etc) by means of attributes
(i.e. size, width, color, and methods such as selection, activation, state change, etc); (c) they
preserve a degree of independence from particular windowing systems and environments (i.e.

they are platform independent). In the context of the present work, the term is used in a
broader sense to include additional properties such as the following:

• AIOs are adaptable to the end user (i.e. their attributes can be adapted through
reasoning);

• AIOs are metaphor independent (e.g. an AIO can be applicable for both the Desktop and
Rooms metaphor);

• AIOs may have multiple physical realizations (i.e. they support polymorphism at the
physical implementation level).

Abstract Interaction Objects possessing the extended set of properties are referred to as
virtual interaction objects.
Virtual object classes have
physical realizations, depending
on the target environment,
referred to as instances of
virtual objects (Savidis et al.,
1995a). In the present work,
adaptable interface constituents
are attributes of physical
instances of virtual interaction
object classes. The conceptual
object model which is shared by
all tools being described in this
part of the paper is depicted in
the diagram of Figure 6.

The following subsections
provide a brief account of the development and implementation of user interface tools to
support adaptation. In particular, the adaptability module and the toolkits used for interface
development and reviewed.

4.2. Deciding on maximally preferred lexical adaptability rules

Adaptation decisions for attributes of AIOs are automatically derived by a tool, called USE-
IT. This is accomplished in a sequence of three phases: (i) reasoning about adaptation
constituents; (ii) selection of plausible adaptations for each user interface constituent; (ii)
decision on maximally preferred adaptations.

The USE-IT tool comprises: (i) a representation of design elements (i.e. models of the user,
the task, and the availability of input/output devices); (ii) a representation of adaptation
constituents; and (iii) algorithms and an inference engine to reason about, select plausible and
decide on maximally preferred adaptations (see Figure 7).

Adaptability decisions are automatically compiled for those attributes whose adaptation is
necessary to facilitate accessibility of the interface by the target user group. In this manner,
user-specific details (i.e. abilities to operate different input/output devices and/or interaction
techniques, access policy for container objects, topology of interaction objects,

Figure 6: A conceptual representation of the object model

initiation/interim/completion feedback of interaction objects, etc), are transparent to the
interface programmer as this knowledge is embedded within the development platform.

Lexical adaptability decisions are derived for attributes of abstract interaction objects per task
context and interaction metaphor. In general, interaction metaphors may be either embedded
in the User Interface (i.e. menus as interaction objects follow the “restaurant” metaphor) or
may characterize the properties of and the attitude of the overall interaction environment (i.e.
the desktop metaphor presents the user with an interaction environment based on sheets of
papers called windows, folders, etc). In the present work, it is assumed that each development
platform (i.e. OSF/Motif, MS-Windows, etc) serves one interaction metaphor (i.e. the visual
desktop). Consequently, each of those platforms provides the implementational support that is
required for the interactive environment of the metaphor. Different interaction metaphors may
be facilitated either through the enhancement of existing development platforms or by
developing new ones. An example is CommonKit (Savidis et al., 1995b) which supports non-
visual interaction based on the non-visual Rooms interaction metaphor.

The second construct which determines the derivation of lexical adaptability rules by the USE-
IT tool is the application specific task context. Task contexts facilitate the derivation of lexical
adaptability rules based on syntactic knowledge. In other words, different rules may be
inferred for the same object depending on the particular dialogue state. Consequently, a task
context characterizes a "dialogue state" and can be conceived as the context of a given task in
which the user is engaged at a particular time. Dialogue states are indicators of what the user
interface or the user is doing at any point in time. It is important to note that dialogue states
are application-specific and their purpose is two-fold. First they render the user interface
adaptation process task-aware. Secondly, they provide the means for reasoning towards lexical
adaptability rules based on syntactic level user interface knowledge. In other words they allow
for different adaptations of the same object depending on the dialogue state. Thus, a menu
item may be selected through voice input when the user wishes to review a text file, while
when selecting to update the text, the corresponding menu item may be activated through
pointing in 2D. In such a case, the adaptable attributes are the input device and the input
technique used to interact with the menu item.

Figure 7: Overview of USE-IT’s architecture

Task context attributes are characterization criteria which identify the application oriented
interaction requirements in the current state of the dialogue. Each task context is described by
means of its associated application requirements. Towards this, a small set of characterization
criteria have been used to provide the required information (i.e. whether the task requires 2D
positioning, size of the selection set in case the user has to do selection, range of a value that
has to be entered, etc). The designer does not need to instantiate all criteria for a task context,
but only those which are relevant. These properties are stored in a task schema, which is a
collection of attribute-value pairs associated to the particular application specific task context,
and then, they are interpreted to depict task-related constraints (i.e. the task requires a relative
device, the selection set is large, etc). It is important to note that the USE-IT tool provides the
designer with facilities which allow the elicitation of design representations based on the
definition of task context hierarchies (see upper window of Figure 8), instantiation of each
node in the hierarchy (see lower window of Figure 8) and revisions of the lexical specification
layer and the user interface adaptation constituents.

Figure 8: Building and compiling task context schemas

The USE-IT tool implements a semantic network to represent constructs of the lexical layer
(see Figure 9). The designer may select to edit an existing lexical specification or create a new
one from scratch depending on the requirements of the target application and the user group.
In this manner, the designer can disregard several interaction objects, or attributes of
interaction objects or specific values of the domain of an attribute which are not suitable or
desirable for the particular user group. For instance, cognitive impaired users have difficulties
with certain interactive behaviors (i.e. menus, pop-up windows, etc). Consequently, the
designer may select to remove these elements from the lexical specification, thus causing the
adaptation engine of USE-IT to disregard certain interaction object classes or some of their
attributes.

Each abstract interaction object class is related to attributes via semantic relationships. These
relationships specify the type of each attribute, as this is important for the adaptation process.
Thus, an attribute may be classified either as a general attribute, or an appearance attribute, or
a behavior attribute. General attributes are common to all interaction object classes. The
general attributes supported in the current version of USE-IT are inputDevice ,
inputTechnique , outputDevice , outputTechnique , initiationFeddback,
interimFeedback, completionFeddback. In a future version, it is planed to introduce
two additional general attributes, namely startEvent, abortEvent . During the
adaptation process, the semantic network description is used to compile a frame representation
of the abstract interaction object class being adapted. Attributes of an object frame are adapted
by a recursive call to an algorithm which considers general attributes first, then appearance
attributes and finally behavior attributes. An adaptability decision may be established either as
a result of a default rule, a preference or a search towards a maximally preferred option.

Figure 9: Maintaining the lexical level specification

Defaults and preferences are typically used to adapt simple appearance attributes such as
borderSize, fontFamily, typeFace, etc. General and behavior attributes are adapted through
reasoning towards a maximally preferred option. Typically, the adaptation of such attributes
depends on three types of design constraints, namely:

• device availability;
• user-oriented design constraints which are compiled from the user model;
• task-oriented design constraints which are derived from the task context schema and

depict application task requirements.

Device availability is built into the system through a tool which allows the construction of a
domain-specific device model (Akoumianakis et al., 1995). More specifically, the designer
selects a particular device description (containing all available devices) or builds a new
description from scratch. The primitives used to build device models are summarised in Table
3.

Thus, each device is modelled in terms of pragmatic attributes depicting device operation
requirements. A typical device description is shown in the diagram of Figure 10.

<Device>::- Dname,[HumanControlAct],[ContactSite],[PerformanceParameters],
Qualityattribute.

<HumanControlAct>::- Movement of one hand | Movement of both hands |Directed eye Gaze |
Head and neck movement |Movement of lower limbs |Vocalisations.

<ContactSite>::- finger tips of hand |fist|left upper part of head|
right upper part of head|top of head| ControlExtender

<ControlExtender>::- Hand held pointer|Hand held pen|mouthStick|headStick.
<PhysicalAction>::- MotorAttribute| VisualAttribute|HearingAttribute|TactileAttribute|

CommunicationAttribute|LearningAttribute.
<MotorAttribute>::- Constant|Term.
<VisualAttribute>::- Constant|Term.
<HearingAttribute>::- Constant|Term.
<TactileAttribute>::- Constant|Term.
<Com/tionttribute>::- Constant|Term.
<LearningAttribute>::-Constant|Term.
<QualityAttribute>::- Term.

Table 3 : A model-theoretic view of input devices

Figure 10: Building device model (Allocating control acts)

A user model is constructed interactively by declaring the abilities possessed by a particular
user. There are six classes of abilities, namely motor, visual, hearing, tactile, communication
and learning abilities. For each one of those classes the designer can allocate a range of
specific ability parameters as required. For example, the specific parameters of motor abilities
may contain the identification of the user’s reliable control acts, contact sites, but also
possession of functional capabilities such as ability to push and pull, ability to perform the
control act on demand, etc. During an interactive session, the designer describes a prospective
user by instantiating each one of the ability classes, and subsequently, as many of their
parameters as required. Figure 11 indicates a typical session with UMAT which allows the
designer to build the user’s description. The tree depicted in the lower-left hand side of the
diagram of Figure 11 represents in a hierarchical form the contents of the current user model.

It is important to mention that the underlying representation of ability classes and parameters
forms a network which can be developed from scratch by the designer, according to the
requirements of a particular scenario of use. This means that UMAT does not operate upon
pre-defined ability classes and corresponding parameters. Instead, it allows the designer to
build a desirable description of characteristic abilities which influence the current design
scenario. This was necessitated by mainly two reasons. The first relates to the broad range of
user characteristics that are usually needed to describe users, and which are not always known
or can not be predicted in advance. Consequently, the designer should be allowed to modify
and sometimes totally redefine the contents of the knowledge base and the inferencing facilities
that have been used in a particular context. The second and most important reason accounts
for the fact that existing assessment manuals suggest clusters of context-independent abilities.
Thus, they would recommend a scanning device, if the user possessed the abilities of gross
temporal control, visual tracking skills, and control movements and contact sites that allow the
operation of a switch. However, the switch may be perfectly appropriate in a totally different

Figure 11: Building a user model using UMAT

scenario of use. For instance, a switch may be preferable for a young and computer-illiterate
child using an educational software application requiring a small number of selection targets.
In this case, the rule which should trigger the use of the switch is a totally different one than in
the previous case. Consequently, it becomes apparent that the domain UMAT intends to
capture and model is not subject to a single interpretation. This, in turn, necessitates the
modifiability of the underlying representation language (i.e. both the constants of the language
and the inferencing facilities).

User centered-design constraints are declared by a three-argument predicate:
constraint(user,Constituent, assignment)

Such constraints are derived automatically by interpreting the contents of the selected device
model against the current user model. The interpreter is a routine which translates the
disjunctive semantics of a device model into a set of rules and subsequently runs these rules
against the current user model. Disjunctions in the device model are due to the fact that a
device may be operated with more than one control act and for each control act more than one
contact sites may be used. This gives rise to a disjunctive problem description which is
translated into a conjunctive formulation by means of compiling rules. Such rules are stored in
a file which is subsequently run against the user model. During this process, the translator
considers the indifference classes in an ascending order starting with the first indifference class.
Thus, at the end of the process, UMAT is able to select the input/output devices that are
maximally preferred and can be operated by the user. Accordingly, it derives any additional
information regarding other lexical attributes which are dependent upon the selection of an
input/output device.

On the other hand, task-oriented constraints are derived from the task context schema
descriptions which contain syntactic knowledge about the various dialogue states. A task
context schema is a representation language which is used to consolidate application-specific
task requirements, in terms of application-specific task context requirements and a set of initial
preference and/or indifference expressions. The designer can interactively specify the
application requirements of a dialogue state in terms of general characterizations (e.g.

/*------------------------- Task context aggregation policy -----------------------------*/
 policy(`Link selection`,

speed_of_cursor_movement(true),
continuous,discrete).

/*-------------------- End of task context aggregation policy --------------------------*/
/*-----Known Preferences in criterion speed_of_cursor_movement(true) ---------*/
1: preference(`Link selection`,inputDevice,

speed_of_cursor_movement(true),
keyboard,mouse).

2: indifferent(`Link selection`, inputDevice,
speed_of_cursor_movement(true),
mouse, trackball).

3: preference(`Link selection`, inputDevice,
speed_of_cursor_movement(true),
trackball,data_tablet).

4: indifferent(`Link selection`, inputDevice,
speed_of_cursor_movement(true),
data_tablet, joystick).

5: indifferent(`Link selection`, inputDevice,
speed_of_cursor_movement(true),
joystick,lightpen).

Figure 12: Task context schema

selection, text entry), aggregation criteria (e.g. non-visual interaction) and intentions. Such a
design representation is subsequently run against preference constraints (Akoumianakis et al.,
1995) which allow the derivation of missing information and the ranking of competing
alternatives into indifference classes. A typical task context schema is depicted in the diagram
of Figure 12.

4.3. Towards adaptability decisions

To facilitate adaptation decisions based on the three sets of design constraints identified above,
a data structure has been developed, which serves the purpose of consolidating the semantics
of adaptation of a particular attribute into a formal representation which allows USE-IT to
decide on the maximally preferred option. This data structure is referred to as the adaptability
model tree of an adaptation constituent. An adaptability model tree is attribute specific and,
once compiled, it encapsulates all plausible adaptability decisions for a particular attribute of
an abstract interaction object class. To demonstrate the details of this data structure, as well as
the semantics that it can accommodate, let us consider a hypothetical scenario. Let us assume
that the attribute to be adapted is inputDevice and that the user and task oriented constraints
are as follows:

Uconstraints = { keyboard, data_tablet, joystick }
Tconstraints = {mouse, trackball , keyboard, data_tablet }

Let us further assume that the device availability constraints are:
DAconstraints = {mouse, trackball , keyboard, data_tablet, joystick, lightpen }

Given the above sets of constraints the adaptability model tree for attribute inputDevice is
depicted in the diagram of Figure 13.

From this figure, it follows that the total number of branches in an adaptability model tree
equals the number of constraint sets. In other words, each branch in the tree corresponds to a
constraint set. The intersection of the three branches defines the minimal model tree which
satisfies all design constraints. Thus, for the situation described in the diagram of Figure 13,
the minimal model tree is defined by the set:

MINmodel = { ((input_device(keyboard), input_device(data_tablet)),
input_device(keyboard), input_device(data_tablet))}

i nput_dev i ce(keyboard)

input_device(mouse) input_device(mouse)input_device(joystick)

input_device(joystick)

input_device(lightpen)

input_device(trackball)
input_device(trackball)

input_device(data_tablet)

Figure 13: Adaptability model tree for attribute inputDevice

Any one of the elements of this set could be a plausible adaptation for the attribute
input_device. However, for the purposes of the present work, USE-IT decides in favor of the
solution which preserves maximal multi-modality. Thus, the maximally preferred option is
defined by the expression:

input_device(keyboard) ∧ input_device(data_tablet)

Consequently, the adaptability decision which is compiled for this attribute is as follows:
Metaphor.taskContext.Object .input_device = [keyboard, data-tablet]

The above procedure is applied for the adaptation of all attributes for which there is no default
or preference expression in the corresponding knowledge bases.

Sample output of the USE-IT tool is depicted in the diagram of Figure 14, where some lexical
adaptability decisions are listed for abstract interaction object. Currently, USE-IT adapts all
abstract interaction object classes of an interaction metaphor assigned by the designer, for each
task context of a particular user interface. Additionally, the file depicted in Figure 14 may
contain decisions for more than one interaction metaphor if this desired.

Figure 14: Output of USE-IT depicting a sample of lexical adaptability rules derived automatically
for the task context link_selection.

4.4. Applying adaptability decisions through an interface development framework

Until now, design support has been merely faced as the generation of general high-level design
suggestions (such as, for example, hypothetical design guidelines, like use of forms with
explicit confirmation for field values, which could be targeted to specific or non-specific
application domains). The problem with such approaches for practically supporting the
interface design process can be summarized as follows:

I. Guidelines are too specialized and their applicability is limited to particular contexts.
II. Guidelines have been too general and lose power and value when applied for specific

contexts.
III. The relevant topic had small or no relevance with the target application domain.
IV. The initial interaction objectives of guidelines were different, even contradictory with

the target domain and consequently the guidelines were not applicable.
V. The topic and objectives had strong relevance, however, applying the guidelines

directly could be problematic, while an "adaptation" of the original guidelines would be
much less than practically trivial.

VI. Different design guidelines for the same topics and objectives give incompatible
instructions.

VII. Large number of guidelines.
VIII. Guidelines are not structured in a way reflecting a comprehensive design process.

The previous problems limit considerably the practical integration of such generated design
suggestions during the design process. Moreover, the automatic applicability of such design
decisions through an interface development system cannot be realized. Currently, there is no
support for explicitly incorporating design decisions into the interface development process by
means of automatic interpretation and realization of decisions within the resulting interface
implementation.

The USE-IT tool has over-passed this difficulty by extending design suggestions to more
concrete interface design scenarios. The USE-IT tool has the ability to generate different rules
concerning attributes of interaction object classes according to the particular interaction
contexts. These decisions can be interpreted and applied automatically during user-computer
interaction by interactive applications, which are built through specific interface development
systems (see Figure 15). Consequently, such interactive applications practically implement the
design decisions generated by the USE-IT tool. This behavior is achieved by the proper
synergy of the USE-IT tool with the interface development framework which has to
understand and apply decisions provided by the USE-IT tool. This strategy of
implementationally separating systems with different roles during the development process has
many advantages:

• Modification independence, since modifications at one system do not affect the other. In
our approach, the communication between the systems is reduced to the file which is
produced by the USE-IT tool and read by the interface implementation, while the protocol
is mainly the syntax of that file.

• Implementation independence, since different programming languages can be employed
for different systems. For instance, the USE-IT tool has been developed via the Prolog
language, while the interface implementation is provided in the C++ language.

• Design role resolution, since the USE-IT tool is targeted to interface designers and
human-factors specialists, while the interface development systems concern interface
implementation experts. It should be noted that existing interface development
environments usually require that the designer also deals with implementation notations.

• Knowledge reusability, since design decisions for a specific domain can be directly re-used
for interactive applications within the same domain. This is possible since the design
decisions can be easily transferred to the new interface implementation (the interface
implementation will automatically apply the rules).

The interface development systems which has been implemented supports powerful methods
for abstraction of interaction objects and interaction techniques. This has been an important
feature for practically supporting the design
decisions generated by the USE-IT tool which
relies upon a sophisticated model of the
lexical layer of interaction that is not
supported by existing toolkits of interaction
objects. It should be noted that with more
sophisticated and well structured models of
the lexical layer, it is possible to accomplish
high quality of adaptability. Consequently, it
is critical to have interface development
systems which practically provide better
organization and decomposition of lexical
interaction elements. We have utilized the
object abstraction methods of the interface
development framework so as to match the
structural aspects of the lexical level of
interaction as they are realized from the USE-
IT tool point of view.

5. SUMMARY AND
CONCLUSIONS

In this paper, an attempt has been made to review some of the existing efforts described in the
relevant literature, identify their limitations and consider alternative architectural abstractions
that may be used to support the design, development and maintenance of adaptation in user
interfaces. In this context, adaptation was considered in a broad sense encompassing both
adaptability and adaptivity. It was shown how adaptable and adaptive constituents can be
integrated in a high level user interface development platform that provides the required design
and development support. In addition, the paper described specific developments, undertaken
in the context of the ACCESS (TP1001) project of the TIDE Programme of the Commission
of the European Union (DG XIII), towards the definition, design and implementation of tools
supporting the design and implementation of user-adapted interfaces. More specifically, a user
interface design assistant was described which automatically derives adaptation decisions at
the lexical level of interaction. These decisions relate to the adaptation of lexical attributes of
abstract interaction objects required to ensure the accessibility of the user interface by different
user groups, including disabled people. In addition, the structure and capabilities of novel
interface development toolkits has been presented. These toolkits are capable of interpreting
the adaptation decisions of USE-IT to provide the required development and implementation

Figure 15: Synergy of USE-IT with interface
development tools for automatic application of
lexical design decisions

support of user-adapted interfaces for two interaction metaphors supporting visual and non-
visual interaction, respectively.

ACKNOWLEDGMENTS

The present work is carried out in the context of the ACCESS project (TP1001) funded by the TIDE
Programme of the Commission of the European Union. Partners in this consortium are: CNR-IROE (Prime
Contractor), Italy; ICS-FORTH, Greece; University of Athens, Greece; RNIB, U.K.; SELECO, Italy; MA
Systems Ltd., U.K.; Hereward College, U.K.; National Research and Development Centre for Welfare and
Health, Finland; VTT, Finland; PIKO Systems, Finland; University of Hertfordshire, U.K.

REFERENCES

Ancieri, F., Dell’Ommo, P., Nardelli, E., Vocca, P (1991): A user Modeling System, in Human
Aspects in Computing - Design and Use of Interactive Systems and work with terminals,
Bullinger (Editor), pp. 440-447, Elservier.

Akoumianakis, D., Stephanidis C. (1995): Developing domain-specific device representations
to facilitate user interface design for disabled people, submitted for publication.

Benyon, D., Murray, D. (1993): Adaptive Systems: from intelligent tutoring to autonomous
agents, Knowledge-Based Systems, 6(4), pp.197-219

Bodard, F., Hennebert, A-M., Leheureux, J-M, Provot, I., Vanderdonckt, J. (1994): A model-
based Approach to Presentation: A Continuum from Task Analysis to Prototype, in
Proceedings of Eurographics Workshop on Design, Specification and Verification of
Interactive Systems, pp. 25-39.

Brajnik, G., Tasso, C. (1994): A Shell for Developing Non-Monotonic User Modelling
Systems, International Journal of Human Computer-Studies, 40, pp. 31-62.

Browne, P., D. (1993): Experiences from the AID project, in M. Schneider-Hufschmidt, T.
Kuhme and U. Mallinowski (Eds.), Adaptive User Interfaces, pp: 69-78, Amsterdam:
Elsevier Science Publishers B.V, North-Holland.

Cote-Munoz, A., H. (1993): AIDA: An Adaptive System for Interactive Drafting and CAD
Applications, in M. Schneider-Hufschmidt, T. Kuhme and U. Mallinowski (Eds.),
Adaptive User Interfaces, Amsterdam: Elsevier Science Publishers B.V, North-Holland,
pp. 225-240.

Coutaz, J. (1990): Architecture models for interactive software: Failures and trends, In
Engineering for Human-Computer Interaction, G. Cocton (Ed), North-Holland, pp: 473-
490.

Dieterich, H., Malinowski, U., Kuhme, T., Schneider-Hufschmidt, M.(1993): State of the Art
in Adaptive User Interfaces. Adaptive User Interfaces: Principles and Practice, M.
Schneider-Hufschmidt, T Kuhme and U. Malinowski (Eds.), Adaptive User Interfaces,
Amsterdam: Elsevier Science Publishers B.V, North-Holland, pp. 13-48.

De Carolis, B., de Rises, F. (1994): Modelling Adaptive Interaction of OPADE by petri Nets,
SIGCHI, Vol. 26, No. 2, pp. 48-52.

Finin, T. (1989): GUMS: A General User Modelling Shell, in User Models in Dialogue
Systems, A. Kobsa, W. Wahlster (editors), pp. 411-430.

Kay, J. (1995): The um toolkit for reusable, long-term user models, User Modelling and User-
adapted Interaction, 4(3).

Kobsa, A., Pohl, W. (1995): The user modelling shell system BGP-MS, in User Modelling and
User-adapted interaction 4(2), pp. 59-106.

Koller, F. (1993): A demonstrator based investigation of adaptability, in M. Schneider-
Hufschmidt, T. Kuhme and U. Mallinowski (Eds.), Adaptive User Interfaces, pp. 183-196,
Amsterdam: Elsevier Science Publishers B.V, North-Holland.

Lai, K., Malone, T. (19988): Object Lens: A Spreedsheet for Cooperative Work, Proc. of the
Conference on CSCW, ACM, New York, pp.115-124.

MacLean, A., Carter, K., Lovstrand, L., Moran, T, (1990): User-Tailorable Systems:
Pressing the Issues with Buttons, CHI’90, ACM, New York, pp. 175-182.

Myers, A., B. (1990): A new Model for Handling Input, ACM Transactions on Information
Systems, 8(3), pp. 289-320.

Okada (1994): Adaptation by task intention identification, in FRIEND 21 Conf. Proc., Japan,
1995.

Orwant, L., J. (1995): Heterogeneous Learning in the Doppelganger User Modelling System,
in User Modelling and User Adapted Interaction , 4(2), pp: 107-130.

Robertson, G., Henderson, D., Card, S. (1991): Buttons as First Class Objects on an
XDesktop, UIST '91, ACM, New Yoark, pp. 35-44.

Savidis, A., Stephanidis, C. (1995a): Developing Dual User Interfaces for Integrating Blind
and Sighted Users : The HOMER UIMS", in Proceedings of CHI'95 Conference on
Human Factors in Computing Systems, pp:106-113, ACM Press.

Savidis, A., Stephanidis, C. (1995b): Developing Non-Visual Interaction on the basis of the
Rooms metaphor, in Companion of CHI'95 Conference on Human Factors in Computing
Systems, pp. 146-147, ACM Press.

Sherman, H., E., Shortliffe, H., E. (1993): A User-Adaptable Interface to predict Users'
Needs, in M. Schneider-Hufschmidt, T. Kuhme and U. Mallinowski (Eds.), Adaptive User
Interfaces, Amsterdam: Elsevier Science Publishers B.V, North-Holland, pp. 285-315

Stephanidis, C., Savidis, A., Akoumianakis, D. (1995): Towards user interfaces for all,
Conference Proceddings of 2nd TIDE Congress, pp. 167-170.

Stephanidis, C. (1995): Towards User Interfaces for All: Some Critical Issues, in Proceedings
of HCI International ‘95 Conference on Human Computer Interaction, pp. 137-143,
Elsevier.

Stephanidis, C., Savidis, A., Akoumianakis, D. (1996): Development tools towards User
Interfaces for All, to appear in Internation Journal og Human-Computer Interaction.

Sukaviriya, P., Foley, J (1993): Supporting Adaptive Interfaces in a knowledge-based user
Interface Environment, In W. D. Gray, W. E. Hefley, and D. Murray (Eds.), Proceedings
of the 1993 International Workshop on Intelligent User Interfaces (pp. 107-114), Orlando,
FL. New York: ACM Press.

Ten Hagen, P.J.W. (1990): Critique of the Seeheim model. In User Interface Management and
Design, Duce, D., A., Gomes, M., R., Hopgood, F., R., A., and Lee, J., R. (Eds),
Eurographics Seminars, Springer-Verlag.

The UIMS Developers Workshop (1992): A Metamodel for the run-time architecture of an
interactive system, SIGCHI Bulletin 24, 1.

Vergara, H. (1994): PROTUM - A Prolog based Tool for User Modelling, Bericht Nr. 55/94
(WIS-Memo 10), University of Konstanz, Germany.

Zimek (1991): Design of an adaptable/adaptive UIMS in production, in Human Aspects in
Computing - Design and Use of Interactive Systems and work with terminals, Bullinger
(Editor), pp. 748-752, Elservier.

