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Abstract. This paper reports on a work aiming to investigate the potential of a new approach to
model human-computer interaction, called syndetic modeling. The approach aims to solve one of
the crucial problems of interactive systems by explicitly introducing the concept of usability in
system design and development. Syndetic modeling combines a formal expression of system
behaviour with an approximate representation of human cognitive resources in a unifying
framework that allows reasoning about the flow and utilization of information in the combined
system. The potential of the model has been tested against an abstraction of a mouse based
gesture recognition system that is presented here as an example.

1 INTRODUCTION

Recent advances in user interface development has been mainly driven by technical
innovation. Improvements in technology have made possible not only to increase the
power of computing systems but also to develop new physical devices, as the data glove,
novel logical devices, like the rack widget [Connor92] and the cone trees
[Robertson91a], and to create new paradigms forinteracting with the information, such
as the perspective wall [Robertson91b] and the already familiar WWW [Berners92].
Although these developments have addressed significant problems and a great number of
sophisticated systems have been made available in different application areas, an obvious
question arises: will this technology be of effective use?

The issue is not new. In 1973, Martin [Martin73] already noticed thatcomputer system
analysts are going to become increasingly involved with the psychology of terminal users
and a few years earlier Kubrik’s movie2001: A Space Odysseywas intriguing enough to
show that the best way for humans to communicate with a computer would be in their
own language. Many years later, the desktop metaphor has become widely used, direct
manipulation has been claimed to beintuitive and graphical user interfaces have been
said to beuser friendly. Currently, the challenge is to build intuitive structures and
human-centered paradigms that will liberate from dependence on the fixed concept of
computer and will lead to new ways of interacting with information; ways that will be
intuitive, personal, and usable by everyone.

Works [Paterno94][Bastide95] have taken place investigating models and techniques for
analyzing and designing interactionally rich systems, based for example on technology
such as speech and gesture. The aim has been to understand how human aspects of novel
interfaces can be modelled from a variety of disciplinary perspectives, how those
disparate insights can be integrated for the purpose of system development, and the
applicability of the techniques in practice. Formal methods have been one of a number of
approaches; others include cognitive user models, design space representations, and
software architecture models.



Applications (including industrial ones) for formal methods are well known, see for
example Bowen and Hinchey [Bowen95], and Gaudel [Gaudel94]. However, none of the
cited applications uses formal methods to examine the user interface. One reason is that
the interface is often seen as too concrete for (useful) formal description, and the concept
of usability is too vague to permit useful analysis or reasoning. In fact, established use of
formal methods assesses anextended concept of usabilitywhich doesn’t take into
consideration human’s capabilities and limitations. It focuses on thewhat rather than on
howsomething can be obtained. Moreover, there is a temptation to minimize the number
of un-predictable components (as a human being is) within a system by reinforcing its
safety properties. Here, the contradiction is that established use of formal methods tends
to describe systems that are interactionally impoverished.

In human terms, a usable system facilitates effective communication between human and
computer by matching the needs and capabilities of the user with the interface. The
factors that affect usability depend on psychological and social properties of cognition
and work, rather than on abstract mathematical models of programming semantics. For
this reasons described above, claims made through formal methods about the usability of
a system must be grounded in some psychological or social theory.

This paper builds on previous works carried within the AMODEUS project
[Duke94a][Duke95] and demonstrates how a new approach to human-computer
interaction, calledsyndetic modeling, can be used to gain insight into user-oriented
properties of interactive systems. It uses the framework of ICS (Interactive Cognitive
Subsystems) [Barnard93] to describe and analyze the human resources and the
information processing required to interact with a given system. This will be shown by
addressing a simple exemplar, described in section 2, that allows to enter graphical
objects into the system and to manipulate them by means of gestures. Section 3 gives a
short introduction and describes a formal model of ICS. In section 4 a syndetic model is
developed that combines formal models of users and systems within a common
framework. Finally, the syndetic model is analyzed in section 5.

2 EXEMPLAR DESCRIPTION

The example, used throughout the paper, is based on the work on gesture recognition by
Rubine [Rubine91]. Rubine points out that a problem with most gesture-based systems is
that an entire gesture must be entered and the interaction completed before the system
responds. Such systems make it awkward to use gestures for operations that require
continuous feedback. Theeager recognitionmethod, proposed by Rubine, supports a two
phase interaction technique in which a gesture collection phase is immediately followed
by a manipulation phase. This method is claimed to result in a smooth and natural
interaction by allowing views to respond to gestures. We will examine the cognitive load
of users when using such an interaction technique and provide insights into its strengths
and possible limitations.

The example is simple enough and of a size suitable to illustrate the syndetic approach in
the space available. The user specifies commands by simple drawings, typically made
with a pen or mouse. The gesture is indicated before it is classified and command
execution commences. During this phase, calledcollection, the points of the gesture are
collected. Then the gesture is indicated, it is classified, and themanipulation phase is
entered. The classification of the gesture determines the operation to be performed.
Figure 1 show one of the possible scenarios, where two objects are created and



subsequently grouped and moved together.

Figure 1 Creating, grouping and moving objects

The eager recognition method allows for the gestures to be performed continuously by
the user, as shown with the group and move commands mentioned in the figure. In fact,
as soon as a gesture can be classified the manipulation phase is entered without user
intervention; that is gestures are separated automatically by the recognizer itself.

The MAL [Ryan91] notation is used to specify and reason about aspects of the system.
This choice is motivated by that it allows to describe the relationship between the
internal system state and its presentation while keeping the specification compact and
easily understandable. As with anystate basedspecification, we begin by introducing the
types of objects that are of interest. These are primitive types that represent domain
concepts:

type Posn - positions in a user’s gesture
Gesture - recognized gestures, i.e. add_object, manipulate
Shape - possible classification of gestures
Obj - objects in the system

Type constructors allow new types to be defined as the function space (D→ R), the
cartesian product (S× S), the power set (PS) and the sequence (S*). Axioms, expressed
in modal action logic, contain the usual connectivity and quantifiers (∧ for and, ⇒ for
implies, ∃ for exists, ∀ for for-all, etc.). For any action A and predicate Q, the logic
includes a modal predicate [A] Q, meaning that Q is required to hold after performing
action A. In the specification, annotations calledpercepts, such asvis, are used to
represent attributes that are perceivable through some human modality.

2.1 Specification of the Functional Core

According to [Salber94], the functional core is that component of a system that
implements concepts identified by task analysis as relevant to the user to accomplish the
tasks in a specific domain. In our case the first concept to be introduced is the one of
gesture, and we model it as an agent containing an internal state representing the
information relevant to gestures and a set of actions that it can be engaged in.

(a) add_object class gesture (b) a rectangle  is created

(f) final result

(c) add_object class gesture

(d)  a circle is created (e) group andmove gestures

gesture separation



agent:GESTURE- GS

attributes
gestures : Posn*→ Gesture - the gesture corresponding to a sequence of

points
history : Posn* - the sequences of points performed so far

actions
form : Posn* - recognizes a sequence of points formed by

the user
recognize : Gesture - recognizes a complete gesture

axioms
1 ∀ p, P∈ Posn*• history = H∧
1.1 (H ^ p ^ P)∈ dom gestures⇒ [form(p)] history = H ^ p
1.2 (H ^ p ^ P)∉ dom gestures⇒ [form(p)] history = p
2 history∈ dom gestures⇒ obl(recognise(gestures(history)))
3 [recognize(G)] history =∅

According to the eager recognition method, axiom 1 describes the effect of the user
continuously forming a sequence of points that is kept in the history of points. If (axiom
1.1) the new entered subsequence ’p’ might extend the history to a legal gesture it is
concatenated to the history (the operator ^ is the sequence concatenation). Otherwise
(axiom 1.2) the point cannot be used to form a gesture, the sequence so far formed is
discarded and a new sequence is started. As soon as the history of formed points can be
interpreted as a valid gesture, the system is forced to recognize it (axiom 2) and the
history is reset as result of the recognition (axiom 3).

Having described the basic mechanism governing the eager gesture recognition, we
provide an application for it by linking recognized gestures to object shapes and
locations. This is done by defining a new agent that includes the recognizer and extends
the internal state of the system with information describing the semantics of gestures.
This information consists of a set of objects that have a position and a shape associated
with them. No further actions are defined for this agent since state changes are governed
by the actions of the gesture agent.

agent:OBJECT_STORE - OS
GESTURE

attributes
objects :PObj - the set of objects
shapes : Obj→ Shape - the shape of an object
location : Obj→ Posn - the location of an object
abstract : Gesture→ Shape - the shape corresponding to a gesture
update : Obj× Gesture→ Obj - the updating of an object

axioms
1 objects = O∧ history = H⇒

[recognise(add_object)] objects = O⊕ o ∧
shapes(o) = abstract(gestures(H))∧
location(o) = last(H)

2 history = H ⇒
[recognise(manipulate)] shapes(o) = shapes(update(o,gestures(H)))∧

location(o) = location(update(o,gestures(H)))



Axiom 1 describes the effect on the state after the system has recognized a gesture of
classadd_object. A new object is added to the current set of gesture (the operator⊕
specifies object addition), its shape is abstracted from the gesture formed by the user, and
its location is set to the last point of the gesture. Axiom 2 describes the effect on the state
after the system has recognized a gesture of classmanipulate. One (or more) objects is
selected and its shape and location are updated accordingly to the actual gesture.

2.2 Specification of the Interaction Devices

In order to interact with the functional core, interaction devices must also be specified.
We will consider a direct manipulation style of interaction made through the use of a
mouse and a display as commonly available with traditional workstations. Both devices
are specified asinteractors, that is agents that provides with a perceivable presentation of
their internal state [Faconti90][Duke93].

Two more primitive types are introduced that are necessary to describe the state of the
interactors:

type D_Posn - positions in the display coordinate system
M_Posn - positions in the mouse coordinate system

For our purposes, the state of the display is defined simply by a set of sequences of points
in the display space and by a function mapping neutral positions to display positions. The
scene attribute has an associatedvis decoration indicating that it is perceivable through
the human vision modality.

interactor: DISPLAY - DS
attributes

vis scene : P(D_Posn*) - the visible set of objects
present : Posn*→ D_Posn* - transforms neutral space to display space

actions
render

axioms
1 scene = D ⇒ [render] scene = D⊗ present(dp)
2 scene@vis in DISPLAY@vis

Axiom 1 requires that the effect of the render action causes an update of the visible scene
due to the merging of the previous scene with a newly generated output (the operator⊗
indicates the merging). Axiom 2 indicates that the scene is always part of the
presentation of the display. The @vis annotations informs that percepts are considered
instead of the actual values of the attributes.

The description of the mouse simply defines a mapping from mouse space to neutral
space and the operate action that is relevant to the human perception of force and timing
of skeletal musculatures for the control of the arm and the hand operating the device.

interactor: MOUSE - MS
attributes

in_mouse : M_Posn*→ Posn* - transforms mouse space to neutral space
actions

lim/bs operate



In direct manipulation, mouse and display are operated as a unique logical device. This is
captured by the following interactor specification that includes both devices and links
them together. A cursor state information is introduced representing the current position
of the mouse in the neutral space. Although an actual implementation may realize it
differently, the cursor is specified that way so that both display and mouse devices can
refer to it without introducing additional machinery that is not necessary at the level of
abstraction of the specification.

interactor: LOGICAL_DEVICE - LD
MOUSE, DISPLAY

attributes
vis cursor :  Posn - position of the mouse in neutral space

axioms
1 [operate]obl(render)
2 [render] cursor = last(in_mouse(mp))
3 present(cursor)@vis in DISPLAY@vis

Axioms 1 and 2 indicates that when the mouse is operated, the display is forced to
perform a rendering while updating the cursor position with the last entered point. The
output of the cursor is always part of the presentation of the display (axiom 3).

2.3 System Integration

The integration of the functional core and of the interaction devices is described by a
further interactor that includes the specification developed so far. A new attribute is
required that concretizes the objects stored in the system from their shape and location.

interactor: SYSTEM - SYS
OBJECT_STORE, LOGICAL_DEVICE

attributes
concretize : (Shape× Posn)→ Posn*

axioms
1 [operate]obl(form(in_mouse(mp)).
2 scene = D∧ history = H ∧
2.1 H∉ dom gestures ⇒ [render] scene = D⊗ present(H)
2.2 H∈ dom gestures ⇒ [render] scene = (D present(H))⊗

present(concretize(shapes(o),
location(o)))

The axioms completely describe the resulting system. Axiom 1 links the actions
occurring at the device with the ones occurring at the functional core by forcing the
system to recognize the sequence of points formed by the user when operating the
mouse. Axiom 2 describes the changing of the scene when a rendering occurs. If (axiom
2.1) the user is forming a gesture that cannot be recognized, the history points are merged
to the scene. Otherwise (axiom 2.2) the history points are removed (the operator
indicates removal) and the concretization of a new added object or the updating of a
manipulated one are merged to the scene. It should be noted that both⊗ and operators
represent complex functionality of graphics systems. They are under-specified here since
a detailed description of the underlying operations doesn’t add significant information for



the purposes of this paper.

The formal model developed in this section founds its value in that it captures salient
aspects of the system while abstracting from details that are unimportant within this
context. However, the properties that can be verified are properties on the system model
itself, and might be used either as high level requirements, or should be derivable as
consequences from the system description. The point of departure from known design
methods is when the requirement is that the system should be usable. This is not just a
mechanical property of the system, but a statement that implicitly or explicitly must
embody some claim or understanding about human capabilities and limitations. In other
words, in addition to being a (formally) provable consequence of the specification, the
property must also be psychologically valid.

3 A COGNITIVE MODEL OF THE USER

This section describes how the interactor approach can be addressed to describe the user
based on a cognitive model, thus representing expressions of user and system in a
unifying framework. The state and behaviour of an interactor describing the user are
derived from a representation of the Interactive Cognitive Subsystems (ICS), a model of
human information processing that involves building approximate descriptions of the
cognitive activity underlying task performance in human-computer interactions. This
approach does not aim to simulate exactly what is going on in the user’s head, but to
capture the salient features of their cognitive processing. In the remainder of this section
a short introduction to ICS is given for completeness. The interested reader may find a
more complete description of the model in [Barnard93][May93][Barnard94].

3.1 Interactive Cognitive Subsystems

ICS represents cognitive activity as a configuration, or flow of information through
different mental representations. There are nine different forms of mental representation,
each of which can be operated on a particular cognitive subsystem. Although specialized
to deal with specific codes, all subsystems have a common architecture, shown in Figure
2.

Figure 2 Common architecture of ICS subsystems

These subsystems can perform two kinds of operation upon the representations that they
receive at an input array. They can copy the representation directly into the image record,
which acts as a memory local to each subsystem, and they can transform the information
into another mental representation and pass it through a data network to other
subsystems. The transformation processes within each subsystem are independent and
can work in parallel.

copy

image record
to store

from store

input of

input array

transform C to X

transform C to Y

transform C to Z

code C



The representations that can be output by a subsystem are limited by the informational
content of the representations that it operates upon; that is, a subsystem cannot produce
output in every representation. Moreover, any one transformation process can only
operate upon a single coherent data stream at one time. That is, it can only operate upon
one representation, and can only produce one output representation.

If the incoming data is incomplete, a subsystem can augment it by accessing the image
record. Coherent data streams may be blended at the input array of a subsystem, with the
result that a process can transform data derived from multiple input sources in one step.
This balances the output limitation.

The nine subsystems are further distinguished depending on their functionality as:

• Sensory subsystems
VIS visual: encodes dimensions of light such as wavelength, brightness, user visual

space
AC acoustic: encodes dimensions of sound such as frequency, timbre, intensity
BS body-state: encodes dimensions such as skeletal muscle tension

• Structural subsystems
OBJ object: abstract structural description of entities and relations in visual space
MPL morpholexical: abstract structural description of entities and relations in sound

space

• Meaning subsystems
PROP propositional: abstract description of entities and relations in semantic space
IMPLIC implicational: abstract description of human existential space abstracted over

sensory and propositional input

• Effector subsystems
ART articulatory: encodes dimensions such as force, target and timing of articulatory

musculatures
LIM limb: encodes dimensions such as force, target, position and timing of skeletal

musculatures

The nine subsystems acts effectively as communicating processes running in parallel as
shown in Figure 3.

The overall behaviour of the cognitive system is governed by a number of principles,
most of which are out of the scope of this paper. Here, we will address only those
configurations that are relevant to interact with the system described in the previous
section. Configurations are the way in which ICS resources are deployed at a point in
time to perform a cognitive task. Complex configurations can be constructed from
elementary, partial ones, and if an information flow can be constructed, then it is a legal
configuration, subject to three constraints. The first one is that no process can appear
more than once in a configuration. The second constraints is that the order of cyclical
flows within the configuration is not important. Finally, although any one of the sensors
or effectors may be missing, if no sensors or effectors or both are missing in a
configuration there must be a central flow. In other terms, input alone is meaningless and
no output can be generated without either input or central activity.



Figure 3 Overall architecture of ICS

Examples of configurations include:

Following [11], the concept of configuration can be represented formally using a
recursive type definition:

Config ::= sys-sys - transformation from one code to another
| Config::Config - chaining of two configurations
| ConfigR - reciprocal loop
| ConfigBUF - buffered transformation
| Config+Config - dual processing

For example, thelooking andacting while thinking configuration is expressed as

[vis-obj::obj-lim] + [prop-implic::implic-propBUF]R

Moreover, we indicate that a configuration is part of another with

 _ ∝ _ : Configx Config→ bool

AC

VIS

BS

OBJ

IMPLIC

PROP

MPL

LIM

ART

VIS OBJ
ooking:

cting:

ecognition: PROP

cyclical flow
possible

OBJLIMOBJ

comprehension:
recognition

IMPLIC

visual imagery:
PROP

OBJ



as in

[vis-obj::obj-lim] ∝ [vis-obj::obj-lim] + [prop-implic::implic-propBUF]R

showing that the looking and acting configuration is part of the looking and acting while
thinking configuration.

3.2 A Formal Representation of ICS

A simplified model of ICS is directly derived from an understanding of the framework
discussed in the previous section. The notation used is the same used to describe the
system component of an interactive system so that a unique specification can be
subsequently built by combining the two components.

The ICS state is characterized by a configuration, a description of the currently buffered
transformation in a flow, a description of the currently blended inputs, the availability of
data representation at a subsystem, and the ability of a process to transform a data unit.
Three actions are considered: ’transf’ allows the propagation of information in a flow,
’buffer’ allows the location of the buffered transformation to be transferred amongst
subsystems in a configuration and ’blend’ allows the combination of inputs at a
subsystem.

interactor :ICS_MODEL - ICS
attributes

config : Config - configuration of transformation process
buffered : sysx sys - description of currently buffered

transformation
_@_ : codex sys→ bool - data representation available at a

subsystem
ability : sysx sysx code→ {high, low}- ability of a process to transform a

data unit
blended : sys→ Psys - description of blending

actions
transf - map data from one code to another
buffer : sys x sys - put a transformation into buffered mode
blend : sys - combine inputs by blending

axioms
1 p@src ∧ src-dst∝ config⇒ [transf] p@dst
2 src-dst∝ config∧ ability(src,dst,p) = low⇒ obl(buffer(src,dst))
3 buffered = (s, t) ⇔ s-tBUF ∝ config
4 config = C⇒ [buffer(s, t)] buffered = (s, t) ∧ ∀ s, t ∈ sys• s-tBUF ∝ config⇔ s-tBUF

∝ C
5 per(blend(t)) ⇒ ∃ s, t, u ∈ sys• s-t ∝ config∧ u-t ∝ config
6 ∃ s, t, u ∈ sys• s-t ∝ config∧ u-t ∝ config⇒[blend(t)] { s, u} ⊆ blended(t)
7 ∀ s, t, u ∈ sys• s-t ∝ config∧ u-t ∝ config⇒
7.1 {s, u} ⊆ blended(t)

∨
7.2 ∃ d1,d2 ∈ sys•

d1 ≠ d2 ⇒ [s-t::t-d1] + [u-t::t-d2] ∝ config
∨

7.3 d1 = d2 = d ⇒ [s-t::t-d] + [u-t::t-dBUF] ∝ config



∨
[s-t::t-dBUF] + [u-t::t-d] ∝ config

8 ∀ t ∈ sys•
t-prop∝ config∧ p@t ∧ ¬ p@prop⇒

[transf] p@prop∧ (prop-implic::implic-propBUF)R ∝ config

Axiom 1 indicates that the effect of the ’transf’ action is that the representation of ’p’ is
transformed and transferred from source to destination. Axioms 2 to 4 refers to buffering.
A transformation is forced to enter buffered mode if it is part of a configuration and it is
unable to operate on the current representation, the buffered mode is linked to the value
of the configuration and the location of the buffer is permitted to change while living the
structure of the configuration unchanged. Axiom 5 indicates that information blending of
incoming data streams to the same subsystem may take place, while axiom 6 requires
that after the ’blend’ action the involved source subsystems are part of the blending
description of the destination subsystem. Axiom 7 refers to the principle that a
transformation process can operate only on one coherent data stream at any one time.
Consequently, two data streams input to a subsystem are either blended (axiom 7.1), or
refers to different transformation processes (axiom 7.2), or one of the two is buffered
(axiom 7.3) determining an unstable configuration that will oscillate causing disruptive
effects. Finally, axiom 8 states that any transformation in the propositional code requires
that the comprehension loop becomes part of the configuration if neither description nor
relation in semantic space are available for that representation at the propositional
subsystem.

4 SYNDETIC MODELLING

A syndetic model of an interactive system extends the formal model of the device or
interface with the model of the cognitive resources needed to interact with the device.
The key feature of syndesis (as compared for example to other models of the user) is the
use of a cognitive model of human information processing as its basis.
The system presentation is mapped onto the user sensors that receive and transform
percepts for processing by the structural and meaning subsystems. Conversely, user
actions expressed through effectors whose behaviour is driven by the internal subsystems
are mapped onto the system devices for further processing by the functional core. To
complete this mapping, we will indicate with ’lim-hand’ the transformation into the final
user output: this will be represented by motor commands to the ’hand’ operating the
mouse. Figure 4 shows this view.



Figure 4 Syndetic modeling: user and system combined together

4.1 A Syndetic Model of the Example

The formal model of the system provides few insights into the usability of its interface as
well as the formal model of ICS support general claims about the user’s cognitive
processes but not about the effective use of cognitive resources in a given context. By
combining both of them in a syndetic model we can reason about how cognitive
resources are mapped onto the functionality of the system.

The SYSTEM and the ICS_MODEL interactors developed so far are included in the
definition of a new interactor and the axioms that relate the conjoint behaviour of the two
components are defined. These axioms provide the generic ICS model with a concrete
instance of the context in which the user is operating. The user task is to add a new object
or to manipulate an already existing object in the system. The task is achieved by
executing gestures formed by sequences of positions of the hand operating the mouse
device. We assume that the user has knowledge of the relations occurring between
objects and gestures and adopt a highly simplified representation of the user’s goals in
the terms of the sequence of the required positions and of the newly defined scene. Also,
the user is able to interpret the trajectory followed by the hand operating the mouse from
the history and the cursor position in the display space, and similarly to perceive the
position of the hand in the mouse space.

interactor: SYNDETIC - SYN
SYSTEM, ICS_MODEL

attributes
goals : Posn*x Scene - the goals of the user are to form a

sequence of positions in a scene
view : P(Posn*)→ Posn* x Scene - interpretation of trajectory within a

AC

VIS

BS
OBJ

IMPLIC

PROP

MPL

LIM

ART
OBJECT_STORE

GESTURE



scene
direct : Posn*→ Posnx Posn* - interpretation of direction of movement
feel : Posn→ Posn - interpretation of hand position

actions
exec - begin forming a sequence

axioms
1 per(operate)⇒

∃ P∈ Posn*, S∈ Scene, p∈ Posn •
(P,S)@prop∧ p@bs∧
(prop-obj::obj-lim::lim-hand)+(bs-lim::lim-hand)∝ config

2 per(exec)⇒ scene@vis∧ vis-obj::obj-prop∝ config
3 goals = (p ^ P,S)⇒ [exec] (p,S)@prop∧ goals = (P,S)
4 ∀ o ∈ objects• o@vis⇒ present(concretize(shapes(o), location(o))∈ scene
5 ∃ P∈ Posn*• P@vis⇒

present(P)∈ scene∧ history = P∧ cursor = last(P)
6 ∃ P∈ Posn*• P@vis∧ scene@vis∧ vis-obj::obj-prop∝ config⇒

[transf] view(scene)@prop∧ first(view(scene))@prop = P@vis
7 ∃ P∈ Posn*• P@vis∧ vis-obj::obj-lim∝ config⇒

[transf] direct(P)@lim∧ first(direct(P))@lim = last(P)@vis
8 p@bs⇒ operate@bs in MOUSE@bs
9 p@bs∧ bs-lim∝ config⇒ [transf] feel(p)@lim

Axioms 1 and 2 refer to the required ICS configuration. The ’operate’ action, defined in
the mouse interactor, is driven by the limb subsystem that receives a proprioceptive
feedback from the hand as transformed by the body-state subsystem. In order to
consciously operate the mouse, the representation of the trajectory to follow in a scene
must be available at the propositional subsystem and the configuration be set so that it is
transformed into musculature control. To start the sequence of positions the user must
have a representation of the scene at the visual subsystem to be transformed into
propositional code. The forming of a sequence is controlled at the propositional
subsystem by the user’s goals (axiom 3). The presentation of shape and position of all the
objects stored in the system must be made perceivable at the visual subsystem (axiom 4)
as well as the presentation of history and cursor (axiom 5). Both objects, history and
cursor representation is available in propositional code after a ’transf’ action (axiom 5
and 6). Similarly, history and cursor representation is also represented in limb code
(axiom 7). Axioms 8 and 9 require that the body-state subsystem has a perception of the
hand operating the mouse that is interpreted by the limb subsystem.

5 ANALYSIS OF THE SYNDETIC MODEL

The syndetic model given in the previous section permits to reason about interaction by
considering the conjoint behaviour of user and system and to derive facts on the usability
of the system in terms of the requirements for cognitive resources.
In conducting our analysis we refer to axioms with
<agent_abbreviation><axiom_number>; for example, GS1 will refer to axiom 1 of the
gesture interactor.
From SYN1 and SYN2 we build thestandardgesture configuration of ICS subsystems:

[vis-obj :: (obj-prop :: prop-obj)R :: obj-lim :: lim-hand] + [bs-lim :: lim-hand]

The overall configuration satisfies all three principles stated in section 3.1. It is formed



by a primary flow from the visual to the limb subsystem including a reciprocal loop
between object and propositional subsystems and from a secondary flow from the body-
state to the limb subsystems.

5.1 Standard configuration

By analysis of the configuration we first derive the operating mode of the transformation
processes.

• prop-objBUF
Buffering is required at the propositional subsystem in order to initially construct and
subsequently control the progressing the user’s goal from the scene and the intended
gesture representations (consciousness of user’s actions).

• blended(obj)
The object subsystem receives two input streams from the propositional and the visual
subsystems. ICS5 and ICS6 indicates that blending is permitted and if a blend(obj)
action occurs then {prop, vis}⊆ blended(obj). Blending at the object subsystem is
highly desirable since the separation of the two flows will require buffering (ICS7.3)
and its effect could be highly disruptive as described in [12]. For the blending to take
place the representations derived from the user’s view of the scene (SYN4) and of the
history and cursor (SYN5, SYN6) must be coherent with the propositional knowledge
representation about the intended hand position within the visual space perceived in
terms of the cursor (LD2, LD3). This is a requirement imposed on the model by LD1
and SYS2.

• blended(lim)
Two data streams are also present at the limb subsystem. Incoming data from the object
subsystem defines the intended direction of movement, such as the next position to be
acquired in a trajectory, while incoming data from the body-state system represents
proprioceptive information about the current status of the musculature driving the hand
movement; this has been described as the interpretation of the hand position in mouse
space. The condition for the blending to take place can be expressed as

p@bs ∧ P@obj∧ {bs,obj} ⊆ blended(lim)⇔ first(direct(P)@lim = feel(p)@lim

A factor that inhibits the blending is derived from ICS2 for users that have a distorted
perception of their hand derived from bs-lim. From experience, this will be always the
case for multi-part gestures as usually it happens in hand writing. In the case that
blending is inhibited at the limb subsystem, the lim-hand transformation will be
necessarily buffered. Since we know from ICS3 that lim-hand and prop-obj cannot be
buffered concurrently, the overall configuration will oscillate causing a sense of
confusion due to the continuous transfer of the focal awareness about the representation
that is being operated in buffered mode.

In conclusion we may say that in the case of a single continuous gesture performed by an
expert user, the claims of Rubine about its system to result in a smooth and natural
interaction are verified. The resulting configuration is:

[vis-obj :: (obj-prop :: prop-objBUF)R :: obj-lim :: lim-hand] + [bs-lim :: lim-hand]
∧
{vis, prop} ⊆ blended(obj)∧ {obj, bs} ⊆ blended(lim)

In the case of a novice user or multi-part gestures it will cause confusion, user



performance and cognitive load can be improved by acquiring familiarity with the input
device. Until then, the configuration will oscillate between

[vis-obj :: (obj-prop :: prop-objBUF)R :: obj-lim :: lim-hand] + [bs-lim :: lim-hand]
∧
{vis, prop} ⊆ blended(obj)∧ {obj, bs} ⊆ blended(lim)

and

[vis-obj :: (obj-prop :: prop-obj)R :: obj-lim :: lim-handBUF] + [bs-lim :: lim-handBUF]
∧
{vis, prop} ⊆ blended(obj)

5.2 Potential problems

A potential problem is found in reaching the user’s goal, if the system delays the
feedback of the recognition of the gesture. We know from SYS2.1 and SYS2.2 that when
a gesture is recognized the feedback of history is replaced by the result of the
interpretation of the gesture so that the scene may change. In this case the user’s goal will
be (∅,S), and since there are no more positions to perform the configuration will change
into :

(vis-obj :: obj-prop)

denoting a passive user looking at the display. A long time of waiting can be annoying.

A more serious problem arises when, due to similarity of gestures or in the case of
gestures having in common a sub-trajectory, the system misinterprets the user intention.
A possible scenario, derived from a gestural editor, is shown in Figure 5 where three
possible gestures are shown. The ’move’ and ’copy’ commands are made by performing
arcs, respectively clockwise and counterclockwise, while the ’swap’ command is made
by enclosing the objects to be swapped in an 8-shaped figure. The solid figures represent
the objects in the scene after the gesture is performed and the dotted ones represent the
corresponding locations before the gesture.

Figure 5 Gestures sharing a common sub-trajectory

Due to the eager recognizer, a gesture is recognized as soon as there is a sufficient
number of points in the history (GS2). When this happen, the history is reset (GS3) and
its perceivable representation (SYS2.1) is replaced by the representation of the
interpretation of the gesture (SYS2.2). Let’s assume that the user intention was to swap
two objects in the current scene and the corresponding goal were (p^P, SwapedScene).
After the performance of ’p’ the goal is (P, SwapedScene) and a propositional
representation exists (p, SwapedScene)@prop from SYN3. Similarly, the representations

(a) copy (b) move (c) swap



of the trajectory already performed and of the cursor are available at the visual subsystem
(history,cursor)@vis from DS2, LD2, LD3, SYS2.1 and SYN5, and consequently it is
propagated at the propositional subsystem (SYN6). This information is also blended at
the object subsystem. However, the system may recognize ’p’ as either a ’move’ or a
’copy’ gesture, depending on the direction of the movement followed in performing the
’swap’. In this case, by applying SYS2.2, the history is removed from the scene and an
object appear as manipulated in a new scene after rendering. The new scene, when
acquired by the visual and interpreted by the object subsystems will disable the blending
at object level that will enter buffering mode causing an internal re-configuration. When
the representation of the new scene is available at propositional level, there is a mismatch
with the driving of the user’s goal. From ICS7, there exists a possibility of starting the
central engine configuration with highly disruptive effects.

6 CONCLUSIONS

With the advent of a new technology, commonly addressed as multimedia/multimodal,
the challenge is to demonstrate theirusabilityrather than that systems can be built out of
it. The role of human cognitive abilities is becoming increasingly important in this
respect. In particular, there exists a need to be able to reason about usability long before
an actual system is built. Established methods in software engineering and formal
methods do not offer today the necessary support for this reasoning. The approach
outlined in this paper shows that syndetic modeling can be one possible way to explore
to bridge this gap. The underlying combined representation of user and system adds to
existing established methodologies in software development a theoretical background of
cognition that can provide a basis for arguing thewhy an interface is successful, to
discover potential problems and to suggest solutions.
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