
Active Interfaces through Software Agents

Amedeo Cesta
�
and Daniela D'Aloisi

��

� IP-CNR, National Research Council of Italy

Viale Marx 15, I-00137 Rome, Italy

amedeo@pscs2.irmkant.rm.cnr.it

�� Fondazione Ugo Bordoni

Via B. Castiglione 59, I-00142 Rome, Italy

dany@fub.it

Abstract

This paper concerns the development of an interface environment to help users in

repetitive tasks in o�ce work. The main ideas in the project concern: the de-

velopment of active interfaces that autonomously perform tasks minimizing the

interaction with the user; the use of the agent-oriented paradigm to provide both

distributedness and incrementality of the software environment. The paper quickly

illustrates the main issues addressed in the project and shows how they are ex-

ploited in the development of an active interface for �ltering e-mail messages. The

architecture of the �ltering agent follows a multi-agent implementation.

1 Interfacing Useful Software Tools

The spreading of electronic instruments is getting common people more and more in

touch with software tools not always easy to be handled with. Particular emphasis can

be put on network tools and information sources and on their use for di�erent services in

both domestic and o�ce contexts.

Due to the world-wide di�usion of computer networks, to the daily increasing number

of users connected to them and to the quantity of services o�ered, it seems that a lot

of our engagements and amusements will be satis�ed through the networks while we are

comfortably sitting on our chair. This scenario is likely to become true only if interfaces

designed to make acceptable and easy using these o�ered tools are supplied. In some

way, the employment of such tools should be user-transparent.

In fact people could not immediately accept the introduction of machines the utility

of which is not so clear since they change completely their way of facing (and solving)

problems. Also when the users are competent in dealing with sophisticated software

mechanisms, the context can change but the problems are similar. In fact, high-skilled

people do not disdain an aid that would make their work easy, for example by saving

their time. In fact, the full exploitation of services and data available through the Inter-

net takes a lot of time, time that is stolen to their job.

A di�erent issue concerns the usually large amount of knowledge needed to actually use

those tools. Moreover, since the number of di�erent versions or releases increases very

fast, and it is di�cult to follows all the changes especially if the acquisition of any com-

petence is hard.

Both in novice and expert cases, and for all the possible intermediate cases, the interfaces

with these tools have the great responsibility of making the access easier. If the use of

computers must be really enlarged to non-specialist people, their management should be

easy and the interface should take care to do something more than what the users strictly

request. In fact, since the goal is to disengage the user as far as it is possible from learning

the tool, the interface should be active, i.e., it should support the user in each phase of

her interaction. It should suggest solutions and have deductive capabilities.

In our project we are considering interfaces for useful software tools available on the net-

work. A lot of utilities are accessible on public domain repositories which are useful to

solve particular problems but also: (a) they are very powerful but not easily comprehen-

sible. So if from one hand they save time in small tasks, on the other hand they require

a lot of time to be learned; (b) most of the utilities have programmer-oriented interfaces

and, as a consequence, they are mainly used by "hackers" or specialized programmers.

Our work has been focussed on building interfaces that avoid users to learn much about

a particular tool. In addressing this kind of problem we have restricted the application

context to the development of interfaces for tedious and repetitive o�ce tasks, as dealing

with e-mail messages or scheduling meetings or looking for useful information on the

network. These tasks take advantage from or are motivated by the existence of the net-

work, but the wide use and success of tools solving them are strictly depended on their

conjunction with e�ective and supportive interfaces.

In the project we follows two methodological goals: (a) building active interfaces that

carry out some additional role with respect to being simple �lters between users and

applications. The concept of active interface has been introduced in several research in

human-computer interaction (e.g., [5, 7]); (b) employing the agent-oriented paradigm to

implement the interfaces in order to make the whole system both easily extensible and

tailorable to single users. A number of interesting work is going on similar issues (e.g.,

[3, 6]).

In the rest of the paper we show an example of interface to a software tool that avoids

users to learn a speci�c language; has a supporting role with respect to the user; follows

an agent-oriented implementation that allows for the speci�cation of single parts of the

whole system.

2 Active Management of E-mail Messages

The project we are involved has the aim of incrementally developing a software Interface

Agent connecting the user with an intelligent distributed architecture that supports and

assists her in dealing with disparate tasks, tackling di�erent network utilities and utilizing

o�ce services. We have built several specialized agents in order to increase the e�ciency

of the user's daily activities. Task of the Interface Agent is to select the agent(s) that

can satisfy the user's needs, to coordinate the work of di�erent agents, to make them

cooperate in presence of a common goal, to communicate with the external world be it

represented either by intelligent or by non-intelligent entities. Interface Agents acting on

the behalf of di�erent users can interact with each other in order to get help and can

cooperate among them to accomplish particular goals.

At the present, the architecture consists of: a �rst implementation of the Interface Agent,

a Mail Agent, a Meeting Agent and an Info Agent. Each agent consists in turn of

sub-agents specialized to solve a particular problem. In this paper we illustrate the

architecture and the behavior of the Mail Agent in order to show how the concepts above

illustrated are translated into an operative framework. The Mail Agent is in charge

of handling the incoming e-mail messages according to a user's pro�le. With e-mail

messages we mean every types of electronic mail such as bulletin-boards, mailing-lists,

interest groups, etc. To cope with them speci�c tools exist, e.g., packages like Procmail

or MailAgent, that allow a user to �lter the incoming messages: such tools are powerful

but of di�cult usage for non-expert programmers. Our Mail Agent hides to the users

the use of the Procmail software and adds an active task by automatically suggesting

modi�cations in the pro�le on the basis of a comparison between accepted and rejected

messages.

Procmail is a software that checks each incoming e-mail message according to a number

of user-de�ned �lters. Filters have to be speci�ed using the Procmail command language

consisting of a set of operators, as in the following example:

MAILDIR=/usr/users/amedeo/mail

:0 H

* ^ From.*dai-list

:0 c

$MAILDIR/bboards/dai

:0

! dany@fub.it

This command states that any message coming from dai-list should be stored in the

user's sub-directory /bboards/dai, and then forwarded to dany@fub.it. The command

language becomes more and more complex as more sophisticated performances are re-

quired.

A �rst version of theMail Agent was developed addressing the speci�c problem of avoiding

the user to learn the language: a high level language that synthesized Procmail commands

was designed and then an interface was implemented that made such a language easily

accessible by a window interface. The aim was to avoid the user to master the tool lan-

guage. The solution required a serious amount of work in order to write an interpreter

for graphical speci�cation into Procmail commands, but turned out being inadequate

because of its rigidity.

While this �rst solution represented a considerable e�ort in addressing the problem of the

knowledge about the tool language and its use, it completely neglected how to acquire

competence in an e�ective use of the tools. This issue is important and involves the role

of the programmer's skill and experience: in fact, in order to e�ectively use Procmail,

the user should reach a good level of expertise and gather a certain amount of knowledge

about the possibilities o�ered by the tool.

The second version follows the general requirements of our project and collects the results

from the previous system. In particular, it takes the following issues into account: (a)

Agent-based design: the development of the interface follows the agent metaphor. The job

of e-mail �ltering is carried out by an intelligent agent able to interact with the user and

with the external world, able to take the initiative when required, and able to reasoning

about the user and her needs. (b) Distributed architecture: the Mail Agent consists of

several sub-agents each performing a particular set of actions. The sub-agents cooperate

among them to accomplish the required �nal task. (c) Integration of public-domain tools:

some of the sub-agents perform their jobs by using public domain software, i.e., Procmail

and WAIS. (d) Active behavior: the Mail Agent is able to improve its performance by

extracting information from the past history of its interaction with the user.

2.1 The Mail Agent Structure

The Mail Agent handles e-mail messages on user's behalf: in order to avoid the over
ow

of information, it helps the user to automatically select among the incoming e-mail mes-

sages those satisfying constraints speci�ed in one or more pro�les. Only the messages

that correspond to such pro�les are put in the user's mail box, while the other are re-

jected. Actually these messages are not throwing away but are used to suggest possible

modi�cations in the �lter setting. In fact, the rejected messages are indexed and then

compared with the accepted ones to verify if similarity exists, i.e., whether a rejected

message can be caught again since it contains information that the user could �nd useful.

This allows the user to decide a modi�cation for the �lter setting following a Mail Agent's

suggestion. This is part of the active behavior of the interface that tries to go beyond

requests explicitly done.

As above mentioned, the architecture of the MailAgent is distributed. It consists of four

sub-agents each devoted to deal with a particular issue in the context of �ltering e-mail

messages: the Preference Speci�cator, the Re�nement Proposer, the ProcMail Agent and

the Message Manager. Figure 1 shows the components of the MailAgent and the infor-

mation
ow.

Agent

ProcMail Message

Manager

Refinement

Proposer

Preference

Specificator

Dialogue A Dialogue B

INTERFACE

AGENT

USER

MAIL AGENT

Figure 1: The architecture of the Mail Agent

The choice of implementing more entities is due to
exibility and e�ciency criteria.

Moreover, each agent should be though of as an instance of an agent type that could

be active in di�erent contexts. Each sub-agent has precise tasks and utilizes software

functionality to accomplish them: they cooperate among them basically using the KQML

language [4] to carry out the �nal task of �ltering the e-mail messages of the user.

The Interface Agent receives a request from the user of being connected with the Mail

Agent: the request can be either direct, e.g., the user selects just this agent from a menu,

or indirect, e.g., the agent deduces the user's need from the current state of a�airs. Once

the request has been interpreted, the Interface Agent connects the user directly with

the Mail Agent so that its architecture is transparent to the user: after the contact is

established, the user interacts directly with the Mail Agent.

The Preference Speci�cator and the Re�nement Proposer need to interact with the user

since they deal with her interest pro�le: at the present, they show a window the user �lls

in but we are working at a new version in which this information is synthesized by the

Interface Agent on the ground of the data it owns.

The Preference Speci�cator agent assists the user in specifying the �lter's constraints and

then translates these preferences for the ProcMail Agent. In the current version, the agent

dialogues directly with the user through a dialogue window in which she can type the

constraints to be satis�ed by a message in order to be selected among those contained

in the incoming mail. The Preference Speci�cator also translates the descriptions into

an intermediate format that becomes the body of a KQML message to be sent to the

ProcMail agent.

The ProcMail Agent is in charge of generating Procmail �lters. Along with the Preference

Speci�cator, it avoids the user to learn the command language of ProcMail: in fact the

user can specify her preferences in a plain mode without being aware of the complexity

of the target language. The �rst of its tasks is to translate the information coming from

the Preference Speci�cator and asks to the ProcMail program, that is part of its body, to

synthesize the �lter. Then the �lter returned by ProcMail is applied on the incoming e-

mail messages. Each message is marked as accepted or rejected according to the �lter(s),

and then passed to the Message Manager. The accepted messages are also put in the

mail box of the user.

The key role for the active part of the interface is played by the combined activity of the

Preference Speci�cator and the Re�nement Proposer. In particular:

� The main task of the Message Manager agent is to handle with the sets of the

accepted and rejected messages in order to discover whether some of the rejected

messages is similar to one or more of the accepted messages. In an a�rmative

case, some message could be recovered and proposed to the user: then that can

be used to propose a revision of the �lters. The comparison between the messages

is performed by WAIS (Wide Area Information Server), a public-domain tool spe-

cialized in querying databases by employing information retrieval techniques. Each

rejected message is transformed by WAIS in a query against the indexed content of

DB Mail. If relevant messages are found in the rejected set then they are sent to

the Re�nement Proposer.

� Task of the Re�nement Proposer is to extract constraints for new �lters from the

analysis of the relevant messages selected by the Message Manager.

The messages coming from the rejected set and selected by the Message Manager

are stored by the Re�nement Proposer in a database, called DB Relevant. These

messages are shown to the user. For each message, the Re�nement Proposer creates

a new �lter deducing it from the features of the message most similar to it: also

the message is shown with enlightened the relevant keywords. The user can choose

to accept or to modify or to reject the suggested �lter. If the user accepts some of

the modi�cation proposed, this monitoring module sends a request to the ProcMail

Agent of revising the current set of �lters.

The idea is that, given a standard generation of �lters by the user, the system gets a

�rst idea of the user interests and starts a work of observation and revision. Some of the

rejected messages may be "similar" to one or more of the accepted ones. Chances are that

the messages were deleted because of a "rigid" use of ProcMail by the user. A negotiation

phase with the user is started to understand if he acknowledges the acceptance of the

retrieved similar messages.

The system described is implemented on a Sun workstation and is currently used by

several people in our o�ce environment.

3 Conclusions

This paper shortly describes the general ideas we are pursuing in building up intelligent

interfaces to help users in o�ce work. The main methodological issues are the devel-

opment of active and agent-based interfaces. In the particular example shown here, the

Mail Agent, it is possible to see the application of both those aspects. It is worth noting

the active role introduced by adding to the system the Message Manager and the Re�ne-

ment Proposer which are responsible for suggesting some improvements with respect to

the raw proposal initially set by the user through the preference speci�cation. A detailed

description of the Mail Agent can be found in [1], while an extensive description of our

project is [2].

Acknowledgments
The authors thank Vittorio Giannini for the implemention of the mail agent and for stimulation discussions on the topic.

Daniela D'Aloisi carried out their work in the framework of the agreement between the FUB and the Italian PT Adminis-

tration. Amedeo Cesta's work is realized in the framework of the ESPRIT III Working Group No.8319 "A Common Formal
Model of Cooperating Intelligent Agents (ModelAge)".

References
[1] Cesta, A., D'Aloisi, D., Giannini, V., Active Interfaces for Software Tools. In Y.Anzai, K.Ogawa and H.Mori (editors),

Symbiosis of Human and Artifact (Proceedings of the 6th International Conference on Human-Computer Interaction,

Tokyo, July 9-14, 1995), Elsevier Science B.V., 1995, pp.225-230.

[2] Cesta, A., D'Aloisi, D., Implementing Active Interfaces through Software Agents. Tech. Rep. IP-CNR, September 1995.

[3] Etzioni, O., Levy, H.M., Segal, R.B., Thekkath, C.A., The Softbot Approach to OS Interfaces. IEEE Software, July,

1995, pp.42-51.

[4] Finin, T., Weber, J., et al., Speci�cation of the KQML Agent-Communication Language. DRAFT, February 1994.

[5] Fisher, G., Lemke, A. and Schwab, T., 1985. Knowledge-Based Help Systems. Human Factors in Computing Systems.

CHI '85 Conference Proceedings, San Francisco, CA, ACM, 1985, pp.161-167.

[6] Genesereth, M.R., Ketchpel, S.F., Software Agents. Communication of ACM, Special Number on Software Agents,

July 1994, pp.48-53.

[7] Laurel, B. (ed.),The Art of Human-Computer Interface Design. Addison-Wesley, 1990.

