
6th ERCIM Workshop "User Interfaces for All" Short Paper

CNR-IROE, Florence, Italy 25-26 October 2000

Architectural Model for User interfaces
 of Web-based Applications

Petr Hejda

Rockwell Automation

Research Center Prague
Czech Republic

phejda@ra.rockwell.com

Abstract: Web-based applications are by far the most universally accessible. These applications
evolved from simple document retrieval systems to online booking systems, online shopping malls, e-
commerce websites, and collaborative systems, to name just few examples. Widely accepted software
and networking standards allow for effective implementation of these applications. However, these
standards do not help much with making the interface of these applications user friendly and easy to
manage. In other words, there are no or little means to ensure that the user interface provides high
quality in use for all users. We address this problem by introducing an architectural model for user
interfaces of web-based applications. The model reflects both the physical partitioning of the
application as well as the placement of user interface components. The presented model is a synthesis
of two groups of models. The first group contains multi-tier architecture models currently used in the
design of web-based applications. The other group of models consists of traditional models developed
by the HCI community. Our model differentiates between local and remote communication lines. It
can be further customized to fit concrete examples of web-based application types.

1. Introduction
Distributed applications have gained a lot of attention in the past ten years. They are held

responsible for the phenomenal growth of the Internet. Among these applications, the most
common and known ones are so called web-based applications. These applications evolved
from simple document retrieval systems to online booking systems, e-commerce websites,
online shopping malls, and collaborative systems, to name just few examples.

Web-based applications share some common features. They are distributed, meaning the
computation takes place in different physical locations . Typically, the user interface runs on
a different computer than logic and data storage. The client-server architecture is used as a
basic distribution paradigm. User interface is implemented as a thin, universal, and
extendable client. These clients are called browsers in the web community. Clients store
persistently almost no data. The rest of the application employs re-usable parts; both the
server and data store are universal software components. The application specific
knowledge is implemented as data, server extensions, and scripts which are run by both
client and server parts. To allow for integration of re-usable components, open standards are
employed. The last feature, which differentiates web-based applications from general
computer applications, is their continuous run. The application does not shut down once a
user is finished with his/her task. Instead, at least some parts have to run continuously to
serve other users.

While developing web-based applications, designers have the freedom to choose from a
wide range of features and their possible implementations. Standard and non-standard
components can be combined in many ways to achieve various effects and functionality. For
example, let’s say that the application has to have a “commit” option. If user chooses
“commit” a certain action is triggered, if he chooses “cancel” nothing happens. This option
can be implemented in many ways, for instance by two Hyper Text Markup Language
(HTML) hyper links [Musciano 98], or by two buttons in an HTML form, or by two buttons

implemented with JavaScript, or even by a simple Java applet. What is the most effective
way? How to decide? What are the criteria?

Architectural models can be of great advantage here. They can provide conceptualization
of the architecture, define basic building blocks, and relate them to each other [Buschmann
96]. However, there are no architectural models that can be directly used for user interface
issues in web-based applications.

There are two groups of architectural models coming from two communities, which seem
to be related to our problem. The Human-Computer Interaction (HCI) community has
produced many architectural models that address user interface issues [Dix 98]. Multi-tier
models were developed to help to resolve issues regarding physical distribution of application
components.

Arch [Arch 92] is a well-known and accepted architectural model dealing with user
interface issues. It specifies logical components of the user interface. Arch covers the whole
application, from the part interfacing users to the functional core. However, it does not
specify the physical partitioning of the system into networked components. As a result, this
model is not expressive enough for web-based applications where the physical partitioning
plays a critical role in application design.

The other related group of models contains multi-tier models [Pattison 98]. They have
been used for distributed applications consisting of multiple cooperating layers. A tier is any
part of the application which can communicate remotely with other parts. The main concern
of these models is communication. They define how the system is partitioned and the
possible ways the parts can communicate with each other. For example, a three-tier model
[RDS 97] divides the application into a client, server, and data store tier. Multi-tier models do
not deal with user interface issues. They do not target mapping of tiers and user interface
components.

Both Arch and three-tier models can be of help while developing web-based applications.
In our model, we have combined both models into one. This results into a general model. It
deals with both physical partitioning as well as user interface components. This model can be
further customized to fit various implementation techniques and paradigms.

2. General model
In the previous section, we have already mentioned two main requirements an

architectural model should address to be useful for web-based applications. The model should
reflect both the physical distribution of the application and logical partitioning of user
interface components.

The physical distribution can be borrowed from the three-tier model. We have used the
term tier for distinctive parts of the application, which communicate remotely. In a similar
way, the term component is used for a logical part of the user interface of the application as
defined by Arch. This tier/component dichotomy needs to be integrated into one model.
Unfortunately, there is no mapping which would assign some user interface components to
some tiers, or vice-versa.

Instead of a mapping, we have used cross product of tiers and user interface components
as shown in Figure 1. Three tiers form a vertical layering of the general model. Each tier
contains several user interface components. The components of a tier are organized in a
horizontal fashion. Not all tiers contain all available user interface components, meaning
only a subset of the cross product was used. The lines in the model illustrate which
components are allowed to communicate between themselves.

Our three tiers correspond to the tiers of the three-tier model. There are client, server, and
data store tiers. The client tier is the part of the application that runs on the machine operated
by user. Usually, this tier is implemented as a browser and its various extensions, such as

Java and JavaScript interpreters, plug- ins, etc. The server tier corresponds to a so-called
“middle” tier. It is the portion of a distributed application that contains the business logic and
performs most of the computation. This tier is typically located on a shared machine for
optimum resource usage. The data store tier is the portion of a distributed application that
manages access to persistent data and its storage mechanisms, such as relational databases.

Server tier

DCPC DA FC

Data Store tier

DCPC DA FC

Client tier

IC DCPC DA

Remote communication

Local communication

XX User interface component

Legend:

FC

Figure 1: General architectural model

Each tier is populated by up to five user interface components. We have used the
following abbreviations. For more detailed definitions see [Nigay 93].

• IC – interaction component
• PC – presentation component
• DC – dialog controller
• DA – domain adaptor
• FC – functional core
User interface components are connected by two kinds of lines. They represent the

possible communication channels between components. The horizontal ones (full and thick)
depict communication within a tier. The vertical lines (dotted and thin) show information
transmission between tiers.

3. Features of the general model
This section highlights features of the general model. The tiers, interaction components

and their combinations are discussed in detail. Some rules for use of the model are derived.
Tiers capture the physical distribution of the application. Each tier represents a part of

the application that can reside on a separate device. One tier is not supposed to be split
in two or more distributed parts. However, it is possible that two or more tiers run on
the same device. A practical example can be a server and data store running on one
computer.

Interaction components are functional blocks of the user interface implementation.
Similarly to Arch, our model states that the application contains five types of such
functional blocks: functional core, domain adaptor, dialog control, presentation
component, and the interaction component.

Model can be customized. The general model shows all possible placements of user
interface components. The model can be specialized by removing some components to

reflect either existing or desired configuration of the application. For example, the
model of an application implemented as an applet has exactly one of each PC, DC, and
DA components, all placed in the client tier. The server and data tiers contain only
functional core. In general, the model remains functional when there is at least one path
that connects functional core with the interaction component. In any case, no
components are to be added to the general model.

Multiple components are allowed. Although some components can be removed during
customization, there can be several copies of the same component. For example, the
customized model can contain two dialog controllers; the first one is in the client tier,
and the second one in the server tier.

User interface is on the client. The user interface of the whole web-based application
runs on the client tier. The general model expresses this feature by the fact that the
client tier is the only tier that contains the interaction component. Neither server nor
data store tier can contain the interaction component.

Data are not stored on the client. The client tier cannot store the gross of the data.
Although the client tier can implement part of the functional core, the client itself can
store only a limited amount of data related to the user interface. This feature of the
general model reflects the thin client definition [Client].

The client cannot communicate with the data store. The client and data store tiers
cannot communicate directly. Any data transfer between them has to be mediated by
the server tier. This provides better application security and stability.

Model differentiates between local and remote communication. There are two kinds of
lines used in the model shown in Figure 1. The thin lines indicate that remote
communication takes place. This implies these communication lines are slower and
more delayed. They should be used as sparsely as possible, transmitting as few data as
possible. In contrary, the thick lines mean local communication. In this case, no
networking is involved and usually much faster and reliable communication can be
expected.

4. User Interface for All
Building a web based application for all is still a non-traditional challenge. Two groups of

requirements are opposed to each other. On the one hand, the application should have
specialized user interfaces for people with special needs, e.g. for deaf or visually impaired
people. On the other hand, the application should use standard components and standard
protocols. Implementation of special requirements needs careful reasoning about which
components of the system should be extended and how. This section shows how our model
can assist while making these decisions.

As an example, let’s take a hotel reservation system. It should be accessed via either a
Windows Icon Mouse Pointer (WIMP) interface [Martin 96] or a touch-tone phone. The
functionality has to be the same: to place a reservation for a given hotel for given time. The
task of the developer is to decide how to split the application into parts, what the functionality
of each part is, and what standard software can be used to implement some of the parts. Two
customizations of the general model can be used to assist the development.

Table 1 proposes one of the many solutions, how the tiers can be populated by user
interface components to achieve reasonable quality of service. The rows of the table speak
about the tiers of the application. The columns relate to versions of the user interface. The
description of the decisions that led to this particular assignment is out of the scope of this
short paper.

Table 1 Example of tier / component assignment

 WIMP interface Touch-tone interface
Client tier IC, PC, DC IC
Server tier DA PC, DC, DA
Data store tier FC FC

Both customizations can be then combined into one customized architectural model, as

shown in Figure 2. The combination is done to minimize the number of components used in
the actual implementation.

Client tier 1

IC

Server tier

DA

Data Store tier

FC

Client tier 2

IC

DCPC DA

FC

PC DCIC

Figure 2 Architecture for WIMP / phone application

There are two versions of the client tier. Each version models architecture of different
client devices. Client tier version 1 depicts the phone, containing nothing but an interaction
component. Version 2 models the proposed setup for the WIMP interface.

The server and data store tiers are shared by both versions of the client tier. This provides
common functionality of both kinds of the user interface. The server tier contains the domain
adaptor, dialog control and presentation component. The phone interface (version 1) uses
different dialog control and presentation component than the WIMP interface (version 2).
This allows for additional flexibility in tailoring the structure and form of a dialog to different
needs of different media.

Some interface components of the model are drawn with a dark background. They
represent those components that can be implemented using standard software. Common web
browsers can be used to implement version 2 of the client tier. Domain adaptor and functional
core can be realized as a common web server. In this way, development costs can be
minimized while providing high quality in use.

5. Summary
The development of web-based applications is a complex and error-prone process. We

address this problem by introducing a general architectural model for web-based applications.
The model was constructed to reflect both the physical partitioning of the application, as well
as to provide a tool while reasoning about a user interface, its components, and their
implementation.

The general architectural model is derived from a cross product between a multi-tier
model and a user interface model. The physical partitioning was expressed using three tiers: a
client, server, and data store tier. The tiers reflect physical components of the application,
such as a client device, server computer, and database system. The user interface components
refer to user interface creation process. Each user interface component can exist in several
copies. There is one exception from this principle; the interaction component can reside only
in the client tier, thus reflecting the fact, that the user interface is visible solely on the client
device. The model specifies that the client tier cannot communicate directly with the data
store tier. Moreover, all communication lines between various user interface components are
listed. The model differentiates between local and remote communication lines.

Among other things, the model can assist to develop web-based applications with multiple
user interfaces covering the same functionality. An example is presented to demonstrate use
of the model in development of an application with a dual user interface.

Bibliography
[Arch 92] The UIMS Tool Developers Workshop, A Metamodel for the Runtime

Architecture of an Interactive System, SIGCHI Bulletin, 24, 1 (Jan. 1992), pp. 32-37

[Buschmann 96] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. “Patterns
Oriented Software Architecture: A System of Patterns”, John Wiley & Son Ltd, 1996

[Client] Thin client definition, http://isp.webopedia.com/TERM/t/thin_client.html

[Dix 98] Dix, A., Finlay, J. E., Abowd, G. D., Beale, R. “Human Computer Interaction”,
Prentice Hall, 1998, pp. 341-373

[Musciano 98] Musciano, C., Kennedy, B. Loukides, M “HTML: The Definitive Guide”,
O’Reilly & Associates, 1998

[Martin 96] Martin, A., Eastman, D. “The User Interface Design Book for the Applications
Programmer”, John Wiley & Sons, 1996, p.116

[Nigay 93] Nigay, L., Coutaz, J. “A Design Space For Multimodal Systems: Concurrent
Processing and Data Fusion”, in Proc. Interchi’93 Human Factor in Computing
Systems (Amsterdam, April 24-29, 1993), ACM Press, pp. 172-178

[Pattison 98] Pattison, T. “Programming Distributed Applications with COM and Microsoft
Visual Basic 6.0”, Microsoft Press, November 1998

[RDS 97] RDS 1.5 Documentation: Understanding Remote Data Service Applications,
http://www.hexagon.net/iishelp/Msadc/docs/adcdg01_1.htm, Microsoft Corp., 1997

