

6th ERCIM Workshop "User Interfaces for All" Long Paper

CNR-IROE, Florence, Italy 25-26 October 2000

A Structured Contextual Approach to Design for All

Chris Stary

Communications Engineering, Department of Business Information Systems
University of Linz, Freistädterstraße 315, A-4040 Linz, Austria

stary@ce.uni-linz.ac.at

Abstract. Although a variety of concepts have been published to implement the design principles
for user interfaces for all, there is still a lack of techniques applicable for structured development
of this type of user interfaces. This paper deals with an approach that has been developed in the
course of an industrial design project. It suggests to gather design options and structure the design
process through a formal decision making procedure, hence increasing the maintainability of
deign solutions and products this way.

1. INTRODUCTION

User Interfaces for All is a concept that targets towards universal accessibility of information.
Regardless of their role, skills, requirements, experiences, and abilities humans should be
able to interact with information systems in an accurate way (Stephanidis et al., 1998). User
interfaces for all focus on the pro-active consideration and incorporation of the diverse
requirements throughout the development life-cycle rather than on the development of
specific solutions for the provision of accessibility to specific user categories (reactive
approach). Pro-activity addresses the accessibility of user interfaces at design time, in order
to finally guarantee the utmost utilisation of an artefact. Hence, pro-activity also requires
implementation-independent descriptions (specifications) of any system, in order to check
whether the intended users (or user group) could be empowered through the artefact or not.
Consequently, design support has to provide not only the representation of user
characteristics but also the assignment of these characteristics to particular styles of
interaction or metaphors (requiring interaction styles) (Stary, 1997).

In addition, artefacts should not exclusively be designed for the sake of implementing hard-
and software, thus focussing on an engineering perspective (‘to put things to practice’). They
should also be designed in the sense of conceiving and planning a socio-technical system (as
suggested in Beyer et al., 1998, p.3). As such, designers have to understand more than a
variety of requirements, guidelines, and representation techniques, namely, how to handle
different perspectives and sources of knowledge, and to develop an open design
representation/model consistent with users’ goals and interaction contexts. Unfortunately, the
dynamics involved in integrating several factors into a usable product elude designers. Yet
designers need to understand these dynamics in order to create software that is truly useful to
and valued by users (Newman et al., 1995). In practice, this means, for instance, that
information types (i.e. codality of information) do not only have to be considered at the
syntactical design layer, but also at the semantic and pragmatic layer, since the encoding of
information plays a crucial role in understanding content and behaviour of artefacts.

The process of mapping complex, contingent human behaviours of information processing to
rule-bound events and properties of accurate interfaces is an extremely challenging task.
Challenges occur in such core design areas as representation, methodology, shared language
and communication. In this paper key pulse points among these challenges are addressed: the
development of design spaces and facilitating design decisions. A procedure for unifying
isolated views about interaction elements and styles as well as design objectives and options
is introduced. It does not only facilitate communication and decision making in product
development projects but also the traceability of the design process itself.

We first review the design ‘ingredients’ and their embodiment into the design process when
developing user interfaces for all (section 2). We then introduce the procedure we followed to
construct design solutions (section 3). The paper concludes with reviewing some results and
an outlook for further research activities (section 4).

2. DESIGN, KNOWLEDGE, AND DECISION MAKING

In this section we do not only review existing work in the field of complex product
development involving user interface design for all, but also refine some of the requirements
addressed above for a structured approach to design for all.

2.1. User Characteristics

Taking into account user characteristics design has to be understood as a process that views
knowledge about users and their involvement in the design process as a central concern’
(Preece, 1994). It does not only require communication between end users and designers, but
also a common understanding among developers. Assume the design of a publicly available
information kiosk at a railway station. In case the terminal and the software should be
designed user-centred, a variety of modalities, objectives to use that information, and
alternatives have to be discussed. Although it is agreed that today’s common practice should
focus on user needs, there is neither consensus about

(i) how to involve end users, nor about
(ii) how the migration of user involvement into software engineering activities has

to occur.

‘Much of the existing advice is complementary, not contradictory, but little attempt to
integrate separate facets into a coherent methodology has been made’ (Gardner, 1991). This
statement points to methodological problems, although the economic proof of user-oriented
development has already been made by that time by Mantei et al. (1988). One reason for
these problems might be that user-centred design has to be ‘done in concert with engineering
realities of functions to be provided, schedules to be met, and development costs to be
managed.’ (Karat et al., 1991) Surveys of design and development practice do not provide
sufficiently insights, since they have been focused mostly on the underlying principles for
application development rather than on the actual process of application design.

2.2. Technology

In case, different technologies, e.g. telecommunication and information technology, have to
be migrated in the course of product development, one of the underlying principles that
requires the communication of design knowledge is the demand for co-operation among
developers from different disciplines. Here, the same rules as between designers and users
have to be applied. Different ‘kinds of instruments’, ‘different kinds of objects’, and different
aims of work (Bodker et al., 1991) might have to be discussed and mutually tuned. Experts
are experienced in their domain, but need to be co-ordinated in collaborative design efforts
(Erickson, 2000). For instances, Bodker et al. (1991) have found out that software
development experts have to suspend their expert status in the dialogue with other experts,
since different cultures of work have to collaborate throughout design. Both have to develop
a common language. That language can neither be the language of experts, since it is too
specialised, nor everyday language, since it remains too ambiguous with respect to semantics
(Vollmerg et al., 1992).

Typically in product development, designers are guided by restrictive principles and
paradigms. For instance, Grudin (1991) has identified some these principles for user interface
design - underscoring that purported support of users has not been proven. These principles
are design simplicity, consistency with a real-word analogue, and anticipation of low-
frequency events. In addition a product-oriented perspective still prevails in industry, viewing
software as a stand-alone product in contrast to a process-driven approach, as e.g., defined by
Floyd (1987). As a stand-alone solution, it abstracts from the underlying system
characteristics and assumes a predefined, in most of the cases, idealised context of use,
thereby allowing requirements to be specified before they are implemented. Hence, the
conventional development paradigm leads to a system that is designed by (several different)
specialists in accordance with technical and economic criteria set by management, but with
little reference to current and future users and contexts of use. This design is then
implemented - with limited scope for modification, but, e.g., as advocated by the early
schools of software engineering (Jackson, 1983), reducing labour processes to technology-
driven information processes (Diaper et al., 1992). Finally, in particular software designers
are interested in immediate effects within their structural concepts (Ropohl, 1979), i.e. what
can be applied to construct an artefact that works (engineering perspective), and final
assessment in the context of use (Flores et al., 1988).

2.3. Tasks

However, information systems accessible for all should not be based on idealised processes
that are performed with the help of or by artefacts (Bodker, 1998). Nor should design
representations be considered to be mappings of current or envisioned (work) situations
and/or applications. Rather they should serve as containers for ideas, carrying their own
context, and evolve iteratively with continuous improvements (Floyd, 1987). They should
cover the entire design space, capturing design options and supporting structured decision
making. This conception has been underlined through recent findings in the field of
requirements tracing (Jarke, 1998). It has been recognised that user needs are changing
permanently, but the need for consistent system development and evolution remains. Design
is considered to be crucial for requirements specification.

2.4. Traceability and the Design Process

Traceability of development has been emphasised, but rarely addressed from a
methodological perspective in the user interface community. One reason might lie in the fact
that user interface builder encapsulate the behaviour of dialog elements and styles. As such,
task-related behaviour is mapped on to predefined sequences of states of dialog elements
(being part of the platform) without further specification of their behaviour. However,
traceability enables repeatability of software development processes - a stage addressed by
level 2 of the software Capability Maturity Model (Humphrey, 1990). At higher levels,
comparing traces to process plans is required - a feature that is also based on transparent and
traceable processes. Data from traceability analyses provide evidence that poorly developed
development organisations (also termed low-level users) are not very likely capable to meet
all customer requirements and to produce systems that are easy to maintain, whereas high-
level users let customers and end users participate, and capture traces across products and
process dimensions (Ramesh, 1998).

2.5. Complex Requirements and Design as a Process of Transformation of Knowledge

Collection and management of complex requirement data without loosing detail have been
addressed by some development methods, such as contextual design (Beyer et al., 1998).
‘Contextual design is an approach to defining software and hardware systems that collects
multiple customer-centred techniques into an integrated design’ process.’ (ibid., p.3)
Unfortunately, it exclusively makes data gathering from potential users the base criteria for
deciding on how the system’s structure and behaviour should look like. This strategy can
only be implemented in case users are able to envision their access to information in some
predefined way, e.g. performing particular tasks. But, what if the task domain cannot be
structured well or the vast majority of users are not known in advance, e.g., in case of
developing a novel series of products? These cases can only be handled through flexible
design spaces, flexible architectures, and structured procedures to come up with those.

When design is understood as a continuous process of knowledge transformation, a step-by-
step procedure allows to move towards a solution. To that respect, Ludolph (1998) suggests
to design by successively transforming task/object models in the course of developing
context-sensitive user interfaces. The addressed process is based on:

• background knowledge, such as requirements and real-life scenarios,
• an essential model, which is a high-level description of the application’s fundamental

functions without reference to technology or how the user will actually perform them,
• a user’s model, i.e. the concepts, objects, and tasks as seen from the user’s

perspective, free of presentation and interaction elements, and finally,
• a completed design, this is how a person will see, think about, and interact with the

application, but including the elements for interaction.

As can be seen, the context is kept until the last step, namely, the design of the artefact.
Following this procedure ensures a user perspective on the flow of control at the specification
level. If implemented this way, it will be perceived correspondingly at the user interface.

2.6. Diversity of Interaction Styles

Another issue which has to be discussed in the context of this work is multi-modality. User
interfaces for all do not only have to provide a variety of ways to interact with information
systems, but also features to switch between these modalities, e.g., between visual and
acoustic output. As a consequence, design spaces have also to capture multiple styles of
interaction, either for in- or output. Different styles of interaction might have to be combined
in a variety of ways. Traditionally, multi-modal systems process combined natural input
modes (speech, pen, touch, manual gestures, gaze, and head and body movements) in a co-
ordinated manner, preferably with multimedia system output. This type of interfaces
represents a new direction for development. It also requires a research-level paradigm shift
away from conventional WIMP interfaces towards providing users with greater expressive
power, naturalness, flexibility and portability.

Focus of multi-modality research has been the technical integration of signals of different
sources, e.g., Cohen et al. (1997), rather than conceptual or methodological issues for
development. For designing user interfaces for all, a wider understanding of multi-modality is
required. In general, it represents the use of different senses and channels of communication
(auditory, tactile etc.). It is strongly related to multi-codality which addresses the issue of how
to use different codes or symbol systems to encode and present information (textual,
graphical, pictorial etc.). Multi-modality tries to map elements and styles from human face-
to-face communication to in- and output features at the user interface. From the input side, in
particular, voice, gestures, and facial expressions are of interest. From the output side,
anthropomorphic functions, avatars, animated agents, speech, and virtual assistants are
elementary features besides the traditional ones, such as windows, icons asf. A more
conceptual understanding of the capabilities and the interplay of multi-modal dialog elements
should enhance the design space.

2.7. Decision Making

Enhancing the design space impacts decision making. The larger the set of alternatives to
provide solutions, the larger the need for structured and transparent decision making. As we
know from the history of software engineering, decisions that are not made in the course of
design and detailed specification, are made through programmers when coding. Hence, a
procedure for a structured design-for-all-process has to also to support decision making. With
respect to designing interactive systems, only few techniques have been applied successfully.
The Questions, Options, and Criteria (QOC)-notation (McLean et al., 1991) and a
corresponding procedure help to formalise and record decision making. It forces developers
‘to standardise and document design issues (questions) in deciding which alternatives
(options) to keep’ (Simpson, 1998, p. 257). The procedure also helps in structuring
relationships between options and their context of use, namely through making explicit the
criteria for evaluating the options. As such, QOC turns out to be an ideal candidate for long
term product development. Simpson concludes, ‘a formal decision-making method - most
likely recorder after than during a design session (so as not to stifle creativity) - would help
with maintainability of the interface design over time.’ (ibid.)

3. TOWARDS AN EMBEDDED DESIGN SPACE ANALYSIS

After having introduced the major ingredients for a structured and open approach to the
design of user interfaces for all, in this section we introduce first steps towards the definition
of the Embedded Design-Space-Analysis (E-DSA) procedure. We give the concept and detail
its use from experiences in an industrial design project.

The sample case concerns the extension of a set-top box, as e.g., conventionally used for TV
appliances, with communication facilities, in order to have a personal communicator for
home and mobile use. The envisioned scenario of use comprises several facilities:

• Internet-connection to a provider via the set-top box
• Digital fax, phone calls, and emails as inputs via Internet or phone
• Mobile-phone screen or TV screen for output
• Remote control from TV or the mobile-phone keypad for control
• Keyboard for data input.

E-DSA targets towards the structured handling of design spaces with respect to interaction
modalities and decision making when selecting design options. It comprises 3 steps: (1) Set
Up of Interaction Space. In this step the available elements and styles for interaction,
including the type of information that can be processed (codality of information) are
captured. This knowledge can be evaluated according to different perspectives, and assigned
to metaphors for designing intuitive features for interaction. (2) Set Up of Task Space. The set
up of the task space captures declarative (the ‘what’) as well as procedural knowledge (the
‘how’). Objectives are restated in terms of tasks. The context of task accomplishment is
detailed in terms of objects, operations on those, and constraints concerning tasks and their
accomplishment. (3) Contextual Exploration and Analysis: The specification of design
solutions is performed through assigning dialog elements and styles to task procedures. It is
based on structured decision making, namely, selecting options based on design criteria,
stemming either from usability engineering or the constraints given for task accomplishment.

Step 1. Interaction Space Set Up. For the set up of the interaction space the framework
proposed in Stary (1996, p. 129, p. 179) has been extended with state-of-the-art styles of
interaction, since other frameworks either lack the required level of granularity, e.g., such as
the one proposed in Newman et al. (1995, p. 294ff), or do not take into account the
characteristics of use, such as the channels of communication for interaction. Finally,
metaphors and characteristics of modalities above technology are encountered rarely through
existing frameworks. However, both are of crucial importance for designing user interfaces
for all. Adequate metaphors facilitate handling interaction devices, and generic characteristics
allow an implementation-independent view on the development knowledge. In the following
we detail this set-up process. It comprises the two sub steps described subsequently.

Step 1a. Contextual Modality Specification. According to several perspectives the modalities
of interest have to be captured. Initially, the elementary (key-modal) styles of the design
space are specified. The technical perspective is addressed through generic structure and
behaviour elements as well as categories of use (control, navigation, data in/output), such as
shown in Lee (1983) for GUIs. This type of descriptions turned out to be extremely useful
when designing compatible products, e.g., as recently shown in the field of browser
development, however, at the syntax layer (http://power.eng.mcmaster.ca/alden/ti.htm).
Table 1 contains menu and window descriptions at the generic layer. Those descriptions have
to be developed for designers, not for programmers. As such, they are abstractions that hold

across platforms and various implementations. They might become resident parts of a design
space. They are easy to (re)use and to handle for further developments.

Modality

STRUCTURE

BEHAVIOUR

CONTEXT OF USE

Menu

Title Bar
Option Field

Open
Close
Highlight

Control
Navigation

Window

Title Bar
Scroll Bar
Work Area
Control Area
Tool Bar

Open
Close
Quit
Resize
Back/Foreground

Data in/output

Table 1. Examples for generic interaction style descriptions

The human-oriented perspective as well as the application-oriented one are addressed in the
following. Table 2 and 3 (upper-bound entries) contain an elementary style of interaction
(menus) and a composed one (GUIs) that are specified in terms of contextual items. Table 2
shows the involved channels for interaction and the required user actions as well as the
provided feedback to inputs by an interactive computer system. A menu might be perceived
visually on the screen and manipulated through manual selection, directly visible on the
screen. Table 3 shows details with respect to input-output behaviour, capabilities for
information codality, required devices for interaction, and guidelines. A menu can be used as
control input device to navigate through a task hierarchy. It might also be used as a data input
device, in case its entries correspond to a set of valid data items. There exists graphical, text-,
and audio-based menu types. Devices for menu interaction range from touch screens to a
micro and speakers. The entries for GUIs will be addressed in step 1b, since in step 1a only
elementary styles, such as interaction via menus, icons, windows, command languages are
captured.

Type of relation-
ship to user

Modality

PERCEPTION

HANDLING

FEEDBACK TO
INPUT

Menu

Seeing
Hearing

Selection (Visual)
Voice (Acoustical)

Visual
Acoustical

Graphical User
Interface (GUI)

Seeing
Hearing

Window
Management

Visual
Acoustical

Table 2. Examples for specifying key-modal (step 1a) and composed interaction styles (step 1b)

with respect to involved user / system actions

Step 1b. Cross-modality Specifications. This steps targets towards an accurate description of
those combinations of modalities that should be considered for the design process. Firstly,
composed interaction styles are captured in a cross-modality matrix (see also table 4).
Secondly, the contextual information has to be acquired analogously to each of the
elementary styles (see also table 2 and 3, lower-bound entry).

Further
Parameter
of Use

Modality

TYPE OF
INPUT

CODALITY

REQUIRED DEVICE

GUIDELINE /
CONSTRAINT

Menu

Control
Data only
as a list

Text
Graphics
Audio

Screen (incl. Touch)
Keyboard
Pointing Device
Speakers
Speech Recogniser

List of options <9
for symbol/text
entries

Graphical User
Interface (GUI)

Control
Data
(Window)

Text
Graphics
Audio

Visual Display
Unit (VDU)
Pointing Device

Provide options
for tiled/overlap-
ping windowing

Table 3. Examples for detailing key-modal (step 1a) and composed interaction styles (step 1b)

with respect to their application

Modality

Menu

Window

Icon

Menu

Menu style
GUI, in
combination with
 Windows, Icons,
Pointing Devices

Plain screen
GUI, in
combination with
Icons, Menus,
Pointing Devices

Graphical menu
Symbolic interaction
GUI, in combination with
Windows, Menus,
Pointing Devices

Graphical User
Interface (GUI)

Enabler (Control)

Enabler (Data)

Enabler (Control)

Table 4. Part of the cross-modality matrix (initial activity of step 1b)

Step 1c. Concept/Metaphor Assignment. The final activity in step 1 is the assignment of
metaphors or interaction concepts (paradigms) to the specified styles in step 1a and 1b.
Usually, this assignment is performed at the level of interaction styles involving more than
one modality, as table 5 shows. For our sample case, table 6 and 7 comprise the menu
specification. As can be seen, several types of menus (textual, acoustical, and graphical) are
part of the design space for the set-top communicator. It also becomes evident from the list of
constraints in table 7 that the product setting requires specific restrictions to the use of menus.
In case of using a mobile-phone display as an output facility, due to space limits, a menu in
list form (e.g., pop-up) must not contain more than 3 entries. When there are more than 3
options to be displayed, another form of presenting control data to users has to be used.

As a result from step 1 a variety of constellations given through the interaction design space
becomes available. In E-DSA, so-called descriptors have been developed to allow an
integrated perspective on an interaction style. For instance, the descriptor P/seeing-
H/selection-F/VDU-unit capture all human-oriented elements for visual interaction via
menus, with P: Perception, H: Handling, F: Feedback. Descriptors turned out to be useful to
describe all possible constellations within styles (technological perspective). They do not
only enable an integrated view, but also take into account variations within styles, such as the
coupling of acoustical presentation of menu options with visual selection of options. Finally,
interaction can be described through descriptors for codalities and metaphors.

Interaction
Concept/
Metaphor

Multi-Modality-
Constellation

DIRECT
MANIPULATION

HANDY

PORTAL

GUI

Enabler

Partial Enabler

Enabler

Virtual Reality

Enabler

Enabler

Partial Enabler

Table 5. Part of the concept/metaphor – modality-matrix (step 1c)

Type of
relationship
to user

Modality

PERCEPTION

HANDLING

FEEDBACK TO
INPUT

Menu

Seeing
Hearing

Selection (Visual)
Voice (Acoustical)

Visual
Acoustical

Table 6. Step-1a results with respect to menu interaction in the set-top-communicator case

Further
Parameter
of Use

Modality

TYPE OF
INPUT

CODALITY

REQUIRED
DEVICE

GUIDELINE /
CONSTRAINT

Menu

Control
Data only
as a list

Text
Graphics
Audio

Screen (also
Touch)
Keyboard
Pointing Device
Speakers
Speech
Recogniser

List of options <9
for graphical/text
entries
IF #Options > 3
AND output =
handy display
options must not
displayed in a list

Table 7. Step-1a results with respect to menu interaction in the set-top-communicator case

Step 2. Task Space Set Up. The set up of the task space targets towards the specification of
the essential model. According to Constantine (1995), the essential model is to define the
tasks users might perform without describing how each of the tasks is actually performed. It
rather describes user’s intentions. The model consists of the

• tasks a user wants to accomplish,
• involved objects and operations that comprise those tasks
• relationships among those objects
• one or more use cases for each task.

The tasks should be named, include information on required in/outputs, volumes, frequency
of execution, functional roles that performs them, and all known constraints.

This model can either be generated from scratch, e.g., in case of a new product or extracted
from background information, such as documents describing organisational details. The core
activity at that stage of design is the embodiment of real-life scenarios in terms of tasks. Part

of each scenario is a set of objectives. The objectives state what the scenario is trying to
accomplish. They also might refer to objects and information representing the context of task
processing. The objectives are then restated as tasks involving one or more objects/data.
Information in the scenario about the tasks as stated above (in/outputs, constraints etc.) are
listed with the related tasks. From the use case description we already derive procedural
information for the E-DSA-task space.

The specification of the essential model follows a certain procedure: (1) Objective(s)
identification; (2) Restatement of objectives in terms of tasks; (3) Context specification of
tasks; (4) Path definition(s) for accomplishment, (5) Object definitions; (6) Operation
definitions in accordance to objects and paths. In our sample case, the objectives have been
captured at a macro- and a micro-layer. The macro layer comprises global goals, such as to
enable a single point of communication in a household with telecommuting facilities. At the
micro-level objectives have been addressed that can be easily mapped to tasks. Below a
sample scenario (in the sense of Carroll, 1995) is given that enables the identification of tasks
as well as use cases, as required for essential model construction:

A sales person checks her mail after coming home from a business meeting. With respect to
her job, she has to book a flight from Vienna to Munich for the next day, and to confirm the
meeting on the next day to her manager and the partners of the meeting in Munich. Booking
the flight is done over Internet through information agents, and after the flight confirmation
and the transmission of details (ground transportation, check-in etc.) the meeting can be
confirmed via email.

 MAIL FLIGHT TICKET
 read
 search

 show

 book
 ticketing

 send

Figure 1. Object-specific workflow of sample scenario

The tasks involved are: checking mail, booking flight, confirm meeting. The context is given
through the job description and the telecommuting environment the user is part of. The causal
and temporal relationships between the activities determine the path(s) to be followed for
successful task accomplishment. The objects involved in task accomplishment (see figure 1)
are highly interrelated in that case, since the meeting data are part of the flight data, and the
user data are common to the booking and mail task. They identified objects are: mail, flight,
ticket. Its operations are derived from the set of options available by mail systems (read, send,
attach, etc.) and booking systems (search for flight, select flight offer, book, ticketing etc.).

Step 3. Contextual Exploration and Analysis. The assignment of dialog elements and
styles to task procedures is based on structured decision making, i.e. through selecting

options based on design criteria. We use the experiences from applying QOC (Questions,
Options, and Criteria) to handle the design space. According to MacLean et al. (1991)
Questions identify key design issues. Options provide possible answers to the Questions.
Criteria enable the assessment and comparison of Options. For design space analysis (which
is understood as structured decision making in the course of specifying a technical artefact)
the most important elements are the criteria. They stand for the desirable properties of the
artefact and requirements that must be met. As such, they clarify the objectives of the design
(process) and establish a ground against which the Options are evaluated.

In E-DSA we distinguish Fundamental Questions and Specific Questions, in order to
distinguish between the context and the core of an artefact. Fundamental Questions are
considered to address design issues that have to be handled regardless of the case at hand. In
the following a list of selected fundamental design questions (F-Questions) is given:

• Are there metaphors available that can be applied for control and task
accomplishment according to the scenarios at hand? (F-Qu1)

• Which features enable modality and/or codality switching? (F-Qu2)
• Which scenarios might lead to / require switching between modalities? (F-Qu3)
• How can computer-(il)literate users being supported? (F-Qu4)

As can be seen from this short list, this type of questions addresses the most essential features
an user interface for all should have. F-Qu1 addresses learnability, ease of use and user
conformity. A typical metaphor for the sample case is the mail metaphor for US-users,
displaying the letter box according to the state of incoming or outgoing mails. F-Qu2 and F-
Qu3 encounter for users with different abilities and needs through asking for the provision of
different forms of information presentation and interaction. This way, the adaptability of the
artefact is brought into play. F-Qu4 addresses all the previously mentioned principles of
usability engineering, since it focuses on the support of novice and experienced users. Both
types have to expected for user interfaces utilised by all.

Specific Questions (S-Questions) deal with modalities, functional features and their
intertwining. With respect to functional features the configuration management for different
versions of a product might look like shown in figure 2 for the case at hand. This QOC-
application shows the exploration of the design space with respect to a version of the set-top
communicator that does not offer fax communication, thus, restricting the access to mail and
phone facilities (for the sake of easy-to-learn product features). Once a particular design
option is discussed, follow-up questions in the device context have to be discussed, such as
shown for option O2 (given in figure 2) in figure 3. According to the criteria, again the
variety of features is concerned, and, however, this time the speed is relevant, since
attachments of mails might effect the efficiency of communication. With respect to
presentation figure 4 shows a typical constellation of QOC, namely for the scenario after
reading the mail and looking for a proper flight.

 O1: Full range C: Variety of features

S-Qu: What range of
 features should

be offered?

 O2: Phone and C: Learnability
 mails

indicates list of options available or indicates negatively assessed option
positively assessed option

Figure 2. Sample Specific Question with respect to functional features

 O1: Full range C: Variety of features

S-Qu: What type of
 mails should

be offered for
 mobile phones?
 O2: No C: Speed
 attachments

Figure 3. Sample Follow-Up Question with respect to functional features

 O1: Different C: Shift of dialog focus
 panes according to task
S-Qu: Where to look focus
 for flights?

 O2: Identical C: Minimum of
 pane required input

 activities

Figure 4. Sample Specific Question with respect to interaction features

It has to be decided whether control inputs should be minimised (as e.g., required to achieve
task conformance) at that stage of task accomplishment. Since this step shifts the focus of
task accomplishment to flight booking (after reading mails) the user might get lost, e.g., since
he/she does not find the way back to the mail tool after having booked a flight. In order to
resolve this issue, a contextual constraint might be applied, namely, to use an identical pane
for flight booking and e-mailing, only when the user is experienced in handling several,
probably different, tools at the user interface at the same time. Using QOC, a Support
Argument can be assigned to option O2, when literate users should find dedicated support to
that respect. It can also be assigned as a Challenging Argument to the same option, since
illiterate users might experience troubles when identical panes are used for different tasks.

Since QOC and Design Space Analysis per se do not replace a structured representation of
results, but rather support the process of design, namely how to achieve context-sensitive
results, in E-DSA this issue has to be tackled. Presentation is based on the results of step 1
and 2. Thus, the results of decision making are represented in the context of interaction styles.
Table 8 shows part of the structured assignment of tasks and objects to modalities. Finer
granularity can be achieved through the use of descriptors, showing which interaction
features for control, navigation, and/or data input correspond to which activity for
accomplishment.

In case execution paths cannot be mapped directly onto states of dialog elements, as e.g., in
case of lacking interaction platforms, additional specifications, e.g., state-transition diagrams
have to be developed, in order to specify the dialog sequence for task accomplishment.

Design Elements

Modality

TASK

DATA

DEVICE

Menu

mail

Handy: round-about
TV-screen: list

Graphical User
Interface (GUI)

mail
booking

mail
ticket

TV-screen: window

Table 8. Task and data assignment to interaction styles for the set-top communicator

3. CONCLUSIONS

For designing user interfaces for all, both, complex product features as well as following the
strategy to provide a consistent line of development over product generations, require
maintenance techniques at the specification/representation level. In addition, the design
process has to be supported in a way, that structured decision making is enabled. As such
contextual design spaces provide the means for capturing design-relevant knowledge, and
arrange it in an integrated, but still flexible way. Although existing design techniques
emphasise particular aspects, such as representing tasks, the entire set of activities for product
design has not supported in a consistent way before. We suggest to start out with information
gathering and structuring, and come up with contextual specifications.

Through proper representation and decision making techniques, as Bannon (1997) demands,
the generative uniqueness of specific disciplinary perspectives can be kept while still coming
to agreement about a common object of design. However, before attaining Bannon’s ideal of
unity in difference, developers must understand the source of their differences -- tracing their
divergent views to the fundamental issues of representation, methodology, and an
insufficiently shared language. The introduced steps towards a design space analysis
embedded in the artefact’s context enable to trace the design solution(s) back to the
requirements (objectives and tasks), and the facilities for interaction.
E-DSA (Embedded Design Space Analysis) comprises 3 steps. Step 1 leads to a set up of the
interaction space, i.e. the modalities available for user interface design. Not only the available
elements and styles for interactions, but also the type of information that can be processed
(codality of information) are captured. This knowledge is refined according to different

perspectives (humans, technology, and organisation), and finally assigned to metaphors for
designing intuitive features for interaction. In step 2 the task space to be supported is
specified. Objectives are restated in terms of tasks. The context of task accomplishment is
detailed in terms of objects, operations on those, and constraints. In step 3, the spaces set up
in step 1 and 2, are explored and evaluated against design criteria. First, fundamental issues
for interfaces for all, such as the capability to switch between modalities, are checked.
Secondly, modality- and task-specific issues are analysed. Finally, dialog elements and styles
for interaction are assigned to tasks and the procedures for accomplishment. In E-DSA the
QOC (Question, Options, and Criteria) notation is used for contextual specification and for
documenting the decision making procedure. The applied design criteria either stem from
usability engineering or the constraints given for task accomplishment.

E-DSA has been applied successfully in the course of industrial design projects. Its further
development will focus either on the steps and their mutual tuning, in order to come up with
proper software support, in particular for convenient manipulation of design knowledge
according to the E-DSA procedure.

References

Bannon, L.: Dwelling in the „Great Divide“, in: Social Science, Technical Systems, and Cooperative
Work: Beyond the Great Divide, eds: Bowker, G.; Star, S.L; Turned, W; Gasser, L., Lawrence
Erlbaum Associates, Mahway, NJ, pp. 355-378, 1997.

Beyer, H.; Holtzblatt, K.: Contextual Design. Defining Customer-Centered Systems, Morgan
Kaufman, San Francisco, 1998.

Bodker, S.; Gronbaek, K.: Cooperative Prototyping: Users and Designers in Mutual Activity, in:
Journal of Man-Machine Studies, Vol. 34, pp. 433-478, 1991.

Bodker, S.: Understanding Representation in Design, in: Human-Computer Interaction, Vol. 13, No.
2, pp. 107-125, 1998.

Carroll, J.M. (ed.): Scenario-based Design. Envisioning Work and Technology in System
Development, John Wiley, New York, 1995.

Cohen, P.; Johnston, M.; McGee, D.; Oviatt, D.; Pittman, J.A.; Smith, I.; Chen, L.; Clow, J.:
Quickset: Multimodal Interaction for Distributed Applications, in: Proceedings 5th Int.
Multimedia Conference, ACM, pp. 31-40, 1997.

Constantine, L.L.: Essential Models, in: interactions, Vol. 2, No. 2, pp. 34-46, April 1995.

Diaper, I. Addison, M.: Task Analysis and Systems Analysis for Software Development, in:
Interacting With Computers, Vol. 4, No. 1, pp.124-139, 1992.

Erickson, Th.: Lingua Franca for Design: Sacred Places and Pattern Languages, in: Proceedings
DIS’2000, ACM, 2000.

Floyd, Ch.: Outline of a Paradigm Change in Software Engineering, in: Computers and Democracy,
eds: Bjerknes, G., Ehn, P.; Kyng, M., Avebuy, Aldershot, pp. 191-211, 1987.

Flores, F.; Graves, M.: Computer Systems and the Design of Organizational Interaction, in: ACM
Transactions on Office Information Systems, Vol. 6, No. 2, pp. 504-513, 1988.

Gardner, A.: An Approach to Formalized Procedures for User-Centered System Design, in: Human
Factors for Informatics Usability, eds: Shackel, B.; Richardson, S., Cambridge University
Press, Cambridge, 1991.

Grudin, J.: Systematic Sources of Suboptimal Interface Design in Large Product Development
Organizations, in: Human-Computer Interaction, Vol. 6, pp. 147-196, 1991.

Humphrey, W.: Managing the Software Process, Addison-Wesley, Reading, MA, 1990.

Jackson M., System Development, Prentice Hall, New York, 1983.

Jarke, M.: Requirements Tracing, in: Communications of the ACM, Vol. 41, No. 12, pp. 32-36, 1998.

Karat, J.; Bennet, J.L.: Using Scenarios in Design Meetings, in: Taking Software Design Seriously,
ed.: Karat, J., Academic Press, London, 1991.

Lee, G.: Object-Oriented GUI-Application Development, Prentice Hall, Englewood Cliffs, 1983.

Ludolph, M.: Model-based User Interface Design: Successive Transformations of a Task/Object
Model, in: User Interface Design: Bridging the Gap from User Requirements to Design, CRC
Press, Boca Raton, FL, ed.: Wood, L.E., pp. 81-108, 1998.

Mantei, M.; Teorey, T.: Cost/Benefit Analysis for Incorporating Human Factors in the Software
Lifecycle, in: Communications of the ACM, Vol. 31, No. 4, pp. 428-439, 1988.

MacLean, A.; Young, R.; Bellotti, V.; Moran, T.: Questions, Options, and Criteria: Elements of
Design Space Analysis, in: Human-Computer Interaction, Vol. 6, pp. 201-250, 1991.

Newman, W.M.; Lamming, M.G.: Interactive System Design, Addison Wesley, Wokingham, 1995.

Preece, J.: Human-Computer Interaction, Addison-Wesley, New York, 1994.

Ramesh, B.: Factors Influencing Requirements Traceability Practice, in: Communications of the
ACM, Vol. 41, No. 12, pp. 37-44, 1998.

Ropohl, G.: A Systems Theory of Technology (in German), Hanser, Munich, 1979.

Simpson, K.T.: The UI War Room and Design Prism: A User Interface Design Approach from
Multiple Perspectives, in: User Interface Design, ed.: Wood, L.E., CRC Press, Boca Raton,
pp. 245-274, 1998.

Stary, Ch.: Interactive Systems. Software Development and Software Ergonomics (in German),
Vieweg, Braunschweig/Wiesbaden, 1996.

Stary, Ch.: The Role of Design and Evaluation Principles for User Interfaces for All, in: Proceedings
HCI’97, pp. 477-480, 1997.

Stephanidis, C. (ed.); Salvendy, G.; Akoumianakis; Bevan, N.; Brewer, J.; Emiliani, P.L.; Galetsas,
A.; Haataja, S.; Iakovidis, I.; Jacko, J.; Jenkins, P.; Karshmer, A.; Korn; P.; Marcus, A;
Murphy, H.; Stary, Ch.; Vanderheiden, G.; Weber, G.; Ziegler, J.: Toward an Information
Society for All: An International R&D Agenda, in: Human-Computer Interaction, Vol. 10,
No. 2, pp. 107-134, 1998.

Volmerg, B.; Senghaas-Knoblock, E.: Technology Design and Responsibility (in German),
Westdeutscher Verlag, Opladen, 1992.

