6th ERCIM Workshop " User Interfacesfor All" Long Paper

Usability Issuesin Softwareto Assist Peoplewith Brain Injuries

E. Bonneville, J.C. Muzio and M. Serra

Department of Computer Science
Universty of Victoria
Victorig, B.C. Canada
jmuzio@cs.uvic.ca, mserra@cs.uvic.ca

Abstract. The problems of producing a software system to assist in the rehabilitation of people who have
suffered serious traumatic brain injuries are described. The challenges of ensuring a high level of usability
by incorporating the best of graphic and HCI design into a well established software engineering
methodology are discussed. The resulting suite of programs is now in use at a rehabilitation hospital in
Victoria

1 INTRODUCTION

The Traumatic Brain Injury Program at the Gorge Road Hospital in Victoria, B.C., Canada,

uses software programs to assist the cognitive rehabilitation of patients with brain injuries.

Some programs are currently executed on 15 year-old computers, because there exists no

verson of them for more recent hardware. Even though the software is lacking many

desrable features, it has proven to be very effective and is now an integra part of the

Traumatic Brain Injury Program, Other NorthhAmerican hospitds ae facing the same

dilemma, asthe software was initidly distributed widely, but never upgraded.

This project ams at truly benefiting persons with brain injuries. Specificdly, the objectives

ae

1. To fulfil the needs of the thergpists and the patients by writing a suite of programs which,
dthough they replicate the generd behavior of the exising programs, aso contan
sgnificant enhancements.

2. To yidd a software product that can be used by other rehabilitation ingditutions and aso
by patients suffering from brain injuries working on their own.

Our system, INDIGO, is designed so that it can be repeatedly used and enjoyed by the
patients and the thergpists. The god was to produce very good software, which would aso
provide a genuindy satisfying experience for those usng it. While it has to be effective for
refraning certain cognitive functions, it aso has to track the progress of the patients during
the rehabilitation program.

In this context, experience can be defined as the emotiond, intelectud, and/or physica
reections the usr has while usng the software. Producing a “saisfying experience’ might
seem like a futile and esoteric god for a software system, but it is not. In fact, it is
particularly important to INDIGO. The patients who use INDIGO are engaged in a cognitive
rehabilitation program not by choice, but as a consequence of an unfortunate and tragic
incident. In addition, INDIGO is intended to assess and retrain cognitive functions which
worked normdly before the brain injury, and this is often a tremendous source of frustration
for the patients. The circumstances surrounding the use of INDIGO are difficult, thus the
importance of making it as pleasurable to use as possble. Moreover, INDIGO is imposed on
the patients and only a satisfying experience will prompt them to accept it. The therapidts are

CNR-IROE, Florence, Italy 25-26 October 2000

aso more likely to prescribe INDIGO if both their patients and themsdves enjoy it. In short,
the success of INDIGO depends on its ability to provide a satisfying experience to its users.

Many factors contribute to the creation of compelling experiences in software [Winograd 96],
but aprimary request for the software is that it must be usable. Usahility is the cornerstone of
this project and it will be in the centre of dl discusson.

Software engineers and human-computer interaction (HCI) specidists each propose
methodologies for building software gpplications. HCl is user-centered and software
engineering is sydem-centered. The prevalling modd of software enginearing is to firgt
engineer the gpplication, and concelve a visud representation later, if a al. Software has
“traditionally been desgned with a focus on the computing itsdf: adgorithmic form, function,
and implementation”. However, most software engineering approaches ignore the end users.
On the other hand, HCI emphasizes developing a deep understanding of user characteridics
and tasks. HCl dresses the importance of testing design ideas on red users and of using
forma evauation techniques. However, most HCI methodologies neglect the role of software
engineering relative to the HCI process.

Since the user experience is shaped by the software's user interface (Ul), Ul design deserves
a much atention as engineering. Therefore, we should use both disciplines in the
devedlopment of INDIGO, each in the domain it tackles effectively. Mitchdl Kapor, the
desgner of Lotus 1-2-3, was one of the firs to refer to software development as a design
discipline as opposed to an engineering one. In generd, design is present whenever an object
is created for people to use In software production, design is too often neglected, thus
unconscious, and this is one reason for much of the poorly designed software tha is in
current use. Software design as defined by Kapor [Kapor 90] is a user-oriented fidd. This
gpproach is smilar to that proposed by HCI specidigts. In fact, proponents of software design
argue that the knowledge gained from the HCI fidd should be used in the development of
software. However, software design is broader than HCI. Moreover, it doesn't ignore nor
reject software engineering.

The Roman architecture critic Vitrivius declared that wdl-designed buildings were those
which exhibited firmness, commodity, and delight. According to Kapor [Kapor 90], this is
directly applicable to software:

Firmness. a program should not have any bugs that inhibit its function;

Commodity: a program should be suitable for the purposes for which it was intended;

Delight: The experience of using the program should be a pleasurable one.
The fird characterigic is the responghility of the engineer. The latter two are the
repongbility of the designer. This desgn agpproach to software seems very appropriate for
developing INDIGO.

In this paper, we describe both the design process and the find software product caled
INDIGO. It is currently under evauation a the hospitd, but it has aready been through
considerable reviews and revisions from the therapigts, doctors and other volunteer users.

2. BRAININJURIES, DESIGN PRINCIPLES AND SOFTWARE ENGINEERING

21. Braninjuries

The target users of INDIGO are brain injured persons. Apart from their injury, INDIGO's
users ae likey to have very different backgrounds, so nothing else can be assumed about
them. Every year, approximatedly 50 000 Canadians and two million Americans suffer a

traumatic brain injury and the economic costs are shocking. But the biggest issue of traumatic

bran injuries is surdy the lifdong and devadating consequences for the victims and ther
loved ones.

The bran is a ddicate organ composed of millions of fine nerve fibers. Bran tissue is
composed of hillions of neurons, which cannot grow again or repar themsaves. The neurons
tranamit nerve messages, which are in the form of tiny bursts of dectricity. The brain guides
virtudly every aspect of a person’'s exigence. It is notably the center of decison ad
execution. To handle these responghilities, the bran must know, a each indant, what is

happening insde the body and aso outsde the body, in the environment through the organs
of the senses.

A traumatic brain injury [Marion 99] conggs of physica damage to the brain caused by an
externa or recognizable force. Other events that involve a temporary lack of oxygen, such as
drowning or cardiac arrest, may aso impair the brain and are caled acquired brain injuries.
A bran injury can be cdlassfied according to its severity: minor, moderate or severe
moreover, it is classfied according to the physical damage on the brain: it can be diffuse or
focd. The generd repercusson cyce (Figure 1) shows wha typicaly happens to a person
after a bran injury. The cycde dats with a physcad trauma, which leads to a variety of
physca, cognitive, emotiond and behaviord deficits These problems interact and can
combine to create psychosocid problems, which, by feeding back into the four deficits, can
create new problems.

| Trauma |

Brain injury
and other bodily injuries

Cognitive problems | | Emotional problems | | Behavioral Problems | | Physical problems
[| | I

Psychosocial Problems

Decreased Intimacy
Decreased Productivity

"| Decreased Enjoyment

Decreased Life Satisfaction

Figure 1: The Repercussion Cycle after a Brain Injury

While the peculiarities of each brain injury make it difficult to characterize the usars it is
accurate to report that the victims of traumatic brain injuries typicdly suffer from many of
the following: lessening of cognitive function and the accuracy and speed of responses,
deficits in areas such as concentraion, learning, memory, integrative thinking, planning and
organizing, and control over emations and behaviour. Since numerous cognitive functions are
a work when interacting with software, cognitive disorders directly affect the victims ability
to use software and are directly relevant to the design of INDIGO. The firg three of the
folowing domains of cognition are often impared after a bran injury, while the latter two
aress are sometimes affected:

Memory: usudly specific to new information while old learning is generdly intact.

Attention and concentration: sugtan atention while carrying out a task, shift the attention
from one task to another, divide the attention between two events.

Executive functions, reasoning and judgment: andyzing and syntheszing informeation,
sequencing (the ability to put things in the proper order), goal-directed activities.

Perception: difficulties in auditory and visud functions recognition of objects
imparment of space and digtance judgment, difficulty with orientation.

Language abilities: qudity and the quantity of communication.

Many of these deficits are worse under conditions of dress, faigue and anxiety. This is
relevant to INDIGO because using software is, more often than not, a stressful experience.

2.2. Design Principles

The god of the treatment process is to asss the patient in successfully adjusting and
adepting to everyday living after a brain injury. In order to achieve thee gods the
deterioration cycle of Figure 1 must be broken with occupationa therapy, physica therapy
and speech thergpy to ded with the physicd problems, and cognitive rehabilitation thergpy
and language therapy to tackle the cognitive problems. Given the gods of INDIGO, cognitive
renabilitation is obvioudy directly relevant. Moreover, it is important to note that the
software is dso intended for tracking the progress of the patient during the rehabilitation
program. However, it can only play onerole a atime.

Software for retraining Specific cognitive functions began to agopear in the 1980s.
Surpriangly, there is dill no empiricd evidence for the use of computer software in cognitive
retraning. Researchers consder them to be useful under the condition that they be carefully
chosen and integrated in a rehabilitation program. Prectitioners have seen results for
themsdves and continue to include them in their rehabilitation program.

Since we are concerned with software for human use, the knowledge gained from cognitive
psychology is crucid to our success [Laurd 90]. We focus here on two of the primary
cognitive processes rdevant to software design, that is sdective atention and learning.
Sdective atention is a voluntary mechanism by which we sdect what incoming information
we need to store and process. In software, sdient visua cues facilitate the selective attention
mechanism. Leaning, on the other hand, involves a wide variety of activities from rote
memorization to complex rule learning to the acquistion of complex mentd and motor skills.
It is influenced by the properties of short-term memory. Andogy, dructure and organization
dl fadlitate learning. In addition, we tend to learn more eesly when new information is
presented incrementally.

Consequently, to facilitate the learning of software systems it is beneficid to present
information in a dmple and organized manner, and in incrementd units. The software
designer can dso build on the usar’'s current knowledge by usng andogies and possbly
metaphors. Findly, the interface should be designed to demand minima cognitive resources
for handling the software system, so to leave as much resource as possble for the actud
functiond task that the user needs to fulfill. this requires us to dedgn in conggency, to
exploit metgphors, and to organize functiondity effectively.

It is cdear that desgn cannot be gpplied after the fact, when the fundamenta organization of
the artifact has dready been determined (e.g. "design is ubiquitous’, "to design is to decide"’,
"to desgn is to creae’). Not only must design be an integra pat of the development
lifecyde it must be its sarting point and its unifying factor. These ideas should be common
to dl software development, but they are crucid in our context, where deviations from

optima principles can cause immediae frudrations and complete falure to the bran injured
user.

Because they each introduce knowledge and solutions of ther own, the three visud design
disciplines - grgphic design, indudtrial desgn and architecture - are separate. Nevertheless,
dl three discplines am to create solutions that are both functiondly effective and
aestheticdly pleasng. Graphic design is directly gpplicable to software desgn. It is the
discipline of effective visud communication, to give form usng text and pictures, to
communicate facts, concepts and emotions. The output of graphic design congsts of datic
screens in the interface. The principles and techniques for graphic design derive from five
essentid characteridtics of effective visud displays. These characteridics are elegance and
simplicity, scale, contrast and proportion, and findly organization and visual structure (see
[Mullet 95]).

The various principles and techniques introduced here are contradictory a times. Graphic
desgn is not an exact discipling, and so it requires skillful judgment. We note here a number
of underlying principles which we used extengively.

Unity. The dement in the desgn must be unified to form a coherent entity.

Refinement. Each dement of the desgn as wel as the desgn itsdf must be reduced
through successive refinements.

Fitness. The design must solve the communication problem at hand, be afitted solution.
Reduction. Reducing the design to its essence by removing non-essentid eements.

Regularization. Regularizing the dement of the design, by using regular geometric forms,
amplified contours, and muted colours wherever possble, by making smilar forms
identicd in Sze, shgpe, color texture, lineweght, orientation, aignment or spacing, and
by limiting variation in typogrgphy to afew szesfrom one or two families.

Leverage. Combining dements for maximum leverage. Leverage is especidly important
in user interface, as the available space is rather limited. However, leverage must be used
gparingly as overuse will result in acomplex and unusable interface.

Scale, contrast and proportion. Scale contrast and proportion are about relationships
among the dementsin adesgn.

Clarity. Contrast in the desgn must be unambiguous and clearly intentiond.

Harmony. There must be a pleasng interaction of the design’'s parts, to form an harmonic
whole,

Restraint. Contrasts must be strong but few in number, and limited to one dimension.

Establishing perceptual layers. Perceptud layers dlow the viewer to atend sdectively to
one aspect (or layer) of a desgn. The layers are edtablished by grouping each item of
information into a few caegories, by ranking each category, by determining the
agopropriate visud vaiables for the layers by maximizing the differences between
categories, and minimizing the differences within them.

Sharpening visual distinctions. Sharpening ensures that the digtinctions between two
contrasting eements are large enough to be recognized.

Integrating figure and ground. Integrating figure and ground ensures the impresson of a
sngle unified design, by fitting the design to the context in which it appears. One generd
way is to provide enough space around the margins of the figure, as generous margins can
aone dramaticaly improve a screen.

Organization and visual structure. Organization and visud dructure provide visud
pathways needed to follow the design in a systematic way. It brings together disparate
eements 0 that they work towards a common communication god, providing unity. It
creates a framework, conveys integity, enhances the design's readability by dividing the
information into convenient subsets and brings control to both the desgner and the
viewer. Indeed, dructure is the means by which the designer influences how the visud
display is explored. By the same token, it improves the understandability of the design
and facilitates navigation through the compostion, dl of which empower the viewer.

Grouping. Related dements must be grouped into higher-order units.
Hierarchy. The groupings must be ordered in a hierarchy using the visud varigbles.

Relationship. The dements mugt be visudly related to one another, agan usng the visud
variables. Pogition is especidly useful to convey relations between eements.

Balance. The above principles must not disupt the ovedl equilibrium of the
compogtion. The various visud eements must be balanced on the screen.

Using symmetry. Symmetry ensures balance and clear organization in dmost any design.

Using alignment. Alignment etablishes visud redationships in a design, coordinates the
visud activity of its diverse components, and o ensures that al dements work together
regardless of thair individud roles.

Shaping the display with negative space. Empty spaces in a compostion are essentia
because this negative space directs the viewer's dtention to adjacent regions containing
citical information, dlows proper figure ground integration and yidds a meaningful
globa sructure,

Color. Color can communicate facts, concepts, emotions and moods. In information
design, color has four fundamenta applications. to label, to measure, to represent or
imitate reality and to enliven or decorate The use of color in a software system directly
influences its usability. Although it may appear smple at fird, choosng ad placing color
on a visud display is very difficult. Each color in a visud display is highly senstive to its
aurroundings. Therefore, colors must be chosen in context, not in isolation. Color has
been found to have a considerable effect on a person’s menta and physica date.

Typography. Typography is a basic component of graphic design. It is concerned with the
choice and the arrangement of letterforms and its god is to enhance readability.

Images and signs. Images and Sgns play a dgnificant role in the user interface. They
provide identification, expresson and communication. Images and sgns take the form of
icons in software, and the user has to understand as to what they represent. Unfortunately,
producing understandable icons is a red chalenge. The percaved meaning of an icon
depends on the context in which it appears, combined with the user's background,
knowledge and interests. Hence, icons must be carefully desgned according to the
context in which they appear and the intended audience.

2.3. Software Engineering

All software engineering methods include three components. a notation, a process, and tools
[Booch 94]. The notation is a “language for expressing each modd”. The process conssts of
various tasks that lead to the condruction of these modds. Findly, the tools are used to build
the modds they fadlitate this activity and enforce the modds rules. A methodology is “a

collection of methods applied across the software development life cycle and unified by some
genera, philosophical approach”. The prevailing software engineering methodologies divide
the software-life cycle into a number of general phases which can be roughly described as:
andyds, design, implementation, testing and maintenance.

We bdlieve that the standard engineering design process is not good a connecting the actions
of the software developers with the concerns of the users, so we have attributed this task to
software design. The objective of this phase was to sdect a method for the implementation d
INDIGO. In the context of software engineering, design refers to both the outcome and the
process that provides a path from requirements to implementation - a blueprint for coding. To
confuse matters even more, the architecture is viewed here as what we have cdled the
internal condructs of a software sysem. Given that meaning, it is noteworthy that the
architecture of a system is not directly relevant to its users. However, a clean architecture is
necessary to produce a system which is understandable, extendible, maintainable and as much
as possble, bug less. To tame this complexity, al software engineering methods use problem
decomposition and we use the gpproach of problem decompostion in an object-oriented
paradigm: each grouping in the system represents an object which collaborates with the other
objects to perform dl the actions necessary to solve the problem.

To judify this choice, it is useful to consder the sysem as a whole: INDIGO condgts of ten
games and exercises, which are to be accessed by a sngle menu. The user interface of
INDIGO is graphica. The ten games form a consgtent system: their options, therr features
and their user interfaces are to be very smilar. The graphicd user interface (GUI) of INDIGO
judtifies the use of an dyject-oriented design method. In practice, the development of a GUI is
best peformed with an object-oriented programming language. The need for consstency
within INDIGO drongly suggests the use of object-oriented techniques, especidly reuse
mechaniams. Also, the problem space of INDIGO - games, scores, players, - is naurdly
viewed in tems of objects. The object modd is comprised of four essentid components
[Booch 94], without which the modd is smply not object-oriented: abstraction,
encapsulation, modularity, hierarchy.

An object is characterized by its sate, its behavior and its identity. A classis a set of objects
that share a common sructure and a common behavior. The identity of an object is therefore
what differentiates it from al other objects, including those from the same class.

A fundamenta issue in object-oriented design is to identify the objects and classes that form
the design, and to organize them into hierarchies.

The following actions were required to achieve the implementation of INDIGO:

Determine the classes, the rdations among them;

Sdlect the gpplicable design patterns from the catdog;

Produce class diagramsto illugtrate the class hierarchy and the class reationships,

Produce interaction diagramsto illustrate typical and exceptiona scenarios,

Produce the corresponding code.
As prescribed by the object-oriented process, these steps are performed incrementdly and
iteratively, usng UML notation.

The HCI principles, the background from brain injuries sudies, the philosophy and practica
guidelines from desgn drategies have been carefully integrated to produce the INDIGO
software, whose usability and robustness must be optima to achieve its thergpeutic gods (see
aso [Collins 95] and [Mayhew 91)).

3. INDIGO: THE SOFTWARE

3.1. RequirementsAnalyss

In generd, Requirements Andyss results from observing exiding sysems from
interviewing the potentid users and from dudying the gpplication doman aea In this
particular case, the existing programs provided the minima sat of requirements for the new
gysdem and they were therefore examined and used extensvely in order to grasp wha
savices the sysem should provide and identify the aspects tha could be improved. As
importantly, discussons of the dedred enhancements took place with the occupationa
therapists. The study of the gpplication domain areawas performed concurrently.

The exiging programs conssted of ten exercises, of which some are used for thergpy, and
others are used periodicaly for assessng the improvements in the cognitive capacities of the
patients. The programs did not have a graphical user interface. Instead, they used a question
and answer didog syle, as well as primitive grgphics to display various shapes and figures.
The keyboard was the sole input device for most programs, though two exercises used a
joydtick instead. Most exercises required the user to press a key from a limited set. To
facilitate the recognition of the possble keys, color stickers were placed on these keys. The
patients with serious tremor used a specid keyboard guard, which facilitates the use of the
keyboard by restraining the number of keysthat can be pushed.

Between four and ax of the ten programs are used during a typica sesson with the programs.
In these sessions, the patient Sts in front of the computer while the thergpist stays besides
them and provides indructions. The therapist does not touch the keyboard during the
exercises, but usualy manipulates the computer to start the programs and to switch from one
exercise to another. All programs generated various scores, but most programs did not alow
the printing or saving of the user’s results. When the patients worked with the programs that
did not record their results, the usua procedure was for the therapists to transcribe the scores
themsalves during the execution of the exercise.

We briefly describe here the 10 programs to give a flavour of the new product.

1. Vison Drill: to assess visua-motor capecities, this is desgned to hep improve eye
concentration on a single point. Two vertica bars move from the Sdes of the screen to the
centre of the screen. The user must stop the bars in the exact centre by pressing the space
bar.

2. Missing Number: to assess concentration, memory and sequencing capacities. Nine digits
are displayed one after another, indde a box drawn on the screen, in the specified order
(i.e. random or sequentiad) and at the specified speed. The user must enter the missng
number.

3. Find the Shape: to assess visud capacities. A group of shapes appears on the screen. The
target shape is adone a the top of the screen. The task is to count the shapes that match the
target shape. The user is dlowed to sdect the amount of time the shapes reman
displayed.

4. Number Search: to assess visud capacities, and is used as pat of the pre-driving
assessment. The screen is divided into 4 areas with each area labdlled ether A, B, C or D.
Then the numbers 1-28 are drawn in random order on the screen. The user must identify
the areain which each number islocated and may choose 2 leves of difficulty.

5. Stack Up: is a rendition of the Towers of Hanoi, used to improve the problem solving
skills. Three tables appear with blocks stacked on table 1. The user must move the blocks
to table 3 without ever placing a larger block on top of a smdler one, and may use table 3
as needed or may quit at any time.

6. Circle Chase: to assess visuad-motor capecities. The user sees a large and a smdl circle
and uses the joydick to keep the smdl circle ingde the large drde Levd of difficulty
and choices of running times are avalable.

7. Reaction Time Test: to assess visud-motor capacities. The screen is blank. After a
random period of time, a smal square is drawn in the middle of the screen. The user must
erase the square as quickly as possble by pressing the joystick button. Else if the user
sected the aura dimulus, after a random period of time, a sound is emitted. The user
must stop the sound as quickly as possible by pressing the joystick button.

8. Memory Challenge: to assess memory capacities. The user sees a large rectangle in the
center of the screen. A number of smaller rectangles surround the larger one. In esch
smal one a letter gppears. The user studies the letters and, when ready the letters are
replaced by numbers and one of the letters appears in the center box. The user must enter
the number of the box where the matching letter hides.

9. Mirror Image: to assess visud-motor capacities The screen is divided in hdf and 16
squares labelled A-P appear on each sde. When ready to start, one must press “return”
and various symbols gppear in the squares. The matching squares on each sSde contain
the same symbol, but in one of the squares the symboal is inverted. One must enter the
letter of the square thet contains the inverted symbol.

10. Logical Sequence: to assess the sequencing capecities of the patients. The screen is
divided in four quadrants A, B, C and D. A box appears in the middle of the screen with
the work ‘key’ above it. An expression is displayed in the box and four reated
expressions appear in the four quadrants. The user must select the next logical step.

11. Analyse Data: to dlow to view the results of exercisesfor a particular user.

In order to produce a software sysem of genuine qudity, severd aspects of the existing
programs required consderable improvement, to take advantage of recent computer
technology, to better suit the needs of the persons with brain injuries and to meet the demands
of the thergpigs. Firgt of dal, the problems observed on the existing programs should
absolutely not arise on the new system. Secondly, the existing programs underwent a maor
reorganization, by gathering them into one coherent sysem. This sysem now is consgent,
that is, the options and features are very sSmilar from one pat to another. The software
computes and saves precise users scores for al the exercises and the stored data is readily
available for consultation. The therapists have asked for meaningful scores for each exercise
the scores appear dong with their unit, or with the average or the minima score for the
exercise. Also, they have requested that the order of falures and successes of the user be
recorded. This festure dlows the thergpist to spend more time working directly with the
patients ingtead of recording themselves the performance of the patients. In this respect, the
new system takes advantage of the complementarity of people and machines.

Before the dart of an exercise, the user is now able to choose how many times the exercise is
to be executed. After each try, the system displays feedback before continuing and alows the
user to quit a any point during a game. The sysem has a grgphica user interface with an
harmonious look and fed. The graphica aspect of most of the exercises thrusts a graphical
user interface upon the sysem. By ‘harmonious look and fed’, we refer to the vighility, the
usability and the understandability of the user inteface. It is now essy to interpret and
understand; it contains visble clues to its operations and provides appropriate feedback on

the user’s action. The user interface and the system in generd should be perfectly adapted to
the usars, that is persons with brain injuries. For example, it now provides keyboard input in
addition to mouse input to account for the patients who cannot use the latter input device.

Findly, as suggested by the therapigts, a few individud improvements were made on some
programs.

3.2. Cost/Benefit Analysis

INDIGO offers the following benefits to the Traumatic Brain Injury Program:
It offers the same functiondity as the exiding programs but with additiona useful
features. Consequently, the system serves the needs of the patients and the therapists
better.
The new system is easer and more enjoyable to use, which could make the patients fed
more comfortable than with the existing programs.
Oncethe new systemisin place, the Hospital will be free to discard the old hardware.
Because the new sysem is desgned for hardware and platform upgrades, future
trangtions will be straightforward (without having to rewrite the whole system).
The new system was developed without cost, within the Universty of Victorias research

fecilities, ensuring a high quality standard and the use of the latest software development
methods.

INDIGO offers the following codts to the Traumatic Brain Injury Program:
Time is required from the therapists, mogly for interviews, for feedback and during the
testing phase.
The therapists have to learn how to use the new software. However, the learning curve is
not too steep because it is arequirement that the new system be user friendly.
The system is not being maintained or upgraded by the developer. However, the source
code will be supplied to the Gorge Road Hospital dong with the program.

The overdl benefits of the new system are very clear.

3.3. Reqguirements Specifications

The purpose of the requirement specifications is to thoroughly describe the new system and
ae derived from the requirements andyss, which have been vdidated by the thergpists
through a questionnaire. A small lexicon is useful at this point.

Activity. A particular exercise, eg. Vision Drill, Number Search, etc.

Session. When a patient uses the software and the scores are being recorded, there is an
ongoing session.

Execution. One repetition of an activity.

Option. Parameter to choose before playing: activity options, which are meaningful to the
scores and play options which represent the number of repetitions.

Execution Feedback. Result displayed to the user after every execution.
Try Feedback. Result displayed to the user after every try.
Feedback | nformation. Explanation displayed to the user with the feedback.

Execution Result. Execution feedback and activity options for a particular execution. Kept in
memory during the whole session (scope: session). Digplayed on demand during a session.

Score. Meaningful summary of execution results for each activity. Can be saved on disk
(scope: aslong as patient is kept in database). Displayed on demand during or after a session.

Our concept for the system is described below in point form.

A direct manipulaion interaction syle is used, with the mouse as the pointing device.
However, to account for patients who cannot use the mouse due to motor imparments,
keyboard input is dso dlowed. Namdy, INDIGO is fully ussble ather soldy with the
keyboard or with both the mouse and the keyboard.

A “game’ metaphor is used. This suits the gpplication well since it condgts of ten games.
This metaphor is used to make INDIGO fun yet chdlenging, just like a game. It does not
bring anxiety to the patients as regular assessment exercises can. It is the enforcement of
the game metaphor that provides the ddight of INDIGO.

Windows are not used and the information is presented an the full screen. This decison is
guided by the study of brain injuries. Windows can be useful to view multiple sources of
information on the screen & once and to manage those views. However, this is not
necessary in INDIGO because it conssts of a sequence of sngle screens. In addition, the
use of windows potentidly hides some information and would complicate the interaction
for persons with brain injuries.

On-screen, contextud help is available and eesly accessed a dl times during the
execution of the program, even during an activity. Providing genuindy useful online
help is a chdlenging and multi-faceted task.

There is no such thing as a user error in INDIGO. The software should be as hdpful as
possble when the user plays with the interface. To keep the user in the “right track”,
feedback messages are displayed when unexpected user actions occur

All the controls are visble on the screen (eg. there is no menu bar to hide the menu
choices). This is dso guided by the study of brain injuries. Hiding choices under a menu
bar requires users to remember that some options are avalable even if they are not
vigble. This draws on memory. We are trying to minimize the load on cognitive functions

Whenever an option is not avalable, its control smply doesn't appear on the screen.
Some systems make options lighter or grey when they are not usable. This could be
confusing S0 we smply avoid it.

All the controls are grouped in a “control bar”. This adlows the user to dways go to the
same location to perform any action. It might take a little while for the user to have the
reflex to look at the “control bar” but it should be very handy, once the habit is ingtaled.
To conform to the previous decison, options are congtantly added and removed from the
control bar. The context determines which controls are shown on the screen. Some
controls remain even during ongoing activities.

Vaious sounds, including speech output, are used for feedback and podtive
reinforcement after a good performance. Also, to maximize the chances that the user
perceives the various messages, speech output is used concurrently to written output. The
sound option can be easly turned off from any screen.

Congigtency is enforced in INDIGO. Various features are added to every exercise in order
to bring conastency across the software. The options are harmonized as much as possble.
For ingance, the number of repetitions is an option for every exercises. Also, the try
feedback, the execution feedback, the execution results and the scores are unified. In
other respects, the control bar keeps the buttons in a consstent location. The look and
behaviour of the buttons and other controls are coherent. A colour coding is applied to dl
screens.

Feedback about the performance in the activities is very important for the user, o it is
diginctly displayed. Also, an execution feedback is adways displayed once the activity is
performed. The user’s execution result and scores are not displayed automaticaly but
they are shown on demand.

Figure 2 illustrates our conceptud moded. The sdection menu is INDIGO's hub: one must
pass there to access the different activities. This diagram aso shows a crucid aspect of
INDIGO: the user cannot get trgpped in a screen. In INDIGO, there is dways one button
directly to the exit and another one to the sdlection menu (i.e. board).

An adminigration module is provided to the theragpists. The adminisration module is separate
from the activities it must be executed on its own. It is used to: register and unregister
patients, display and/or print the scores;, set various default vaues for the activities options
(e.g. default values can be gpplied to asingle patient or to agroup); update a patient’ s record.

Figure 2. Conceptual Model

In INDIGO, the main focus with regard to help is to emphasize the implicit help, that is the
helpfulness of the interface and the software itsdf. This implicit hep is integrated in INDIGO
by the way of its affordances, condraints, and feedback messages, to name a few. The
ultimate am of the implicit help is to provide a sdf explanatory software. Of coursg, it is
unredigtic, not to mention arrogant, to clam that we can achieve such perfection. Therefore,
explicit on-line help is provided to supplement the interface. One recurrent guiddine dictates
that on-line help should be dependent on the user’s working context. In INDIGO, the on-line
help istruly context sendtive: each screen in the software has alink to its own help page.

The questions that trigger the use of ontline help can be classfied into five categories.

Goal-oriented questions. “What kind of things can | do with this program?”.

Descriptive questions: “What is this? What does it do?’. The user nterface dement which is
most likely to require a definition is the icon button. In INDIGO, the buttons have pop-up
labels which display a few words about their behaviour when the buttons have the keyboard

focus.

Procedural (or task achievement) questions: “How do | do this?’. The contextud help in
INDIGO explains how to achieve the tasks related to that screen.

Interpretive (diagnogtic) quegtions: “Why did that happen?’. In INDIGO, the “error”
messages might provide answers to such questions.

Navigational questions. “Where am 1?7’. The conceptual mode of INDIGO is made explicit
50 that the user is well equipped to congruct an appropriate mental map. This information is
presented in the help page accessible through the selection menu.

Our god with INDIGO is to make it impossble or very unlikedy for the user to make
mistakes. We are aming to desgn a sysem which congtantly gives trangparent feedback on
the user's actions and which is clear on how to navigate and how to operate the exercises.
Nonetheless, we prefer not to use the term user error because it implies abnorma actions
from the user, and it places the blame on the user. In this spirit, it can be highly effective to
digplay feedback messages when something unusua happens. It is noteworthy that an
absolute requirement for these messagesiis that they be short, clear and courteous.

4, THE IMPLEMENTATION OF INDIGO

A complete description of the architecture and class structure of INDIGO is beyond the scope
of this paper. The UML diagrams for the activities and the framework are avalable from the
authors. Initially, we decided to implement INDIGO in the object-oriented programming
language Java, which was then relatively new. We developed a few prototypes in Java, with
the intention to turn them into the find sysem. However, Java proved to be too low-levd,
overly complex, and possbly too new and ungtable for our needs In addition, it quickly
became tedious and complicated to program the GUI exactly as prescribed by the design.

Our experience with the prototypes had shown that we needed a stable development
environment, intended for the production of highly customized GUI. After consdering
avalable authoring sysems and devdopment environments, we turned to the multimedia
authoring system Macromedia Director, which is a high-levd authoring system. With its film
metaphor, Director alows us to produce GUIs eadsly and quickly. Lingo, the scripting
language in Director, can be used to program the GUI and the system’s back-end. Various
plug-ins to Director, known as Xtras, can be added for additiona functiondity, such as
database connectivity, or networking capabilities. Lingo is not purdly object-oriented, but it
presents some object-oriented feetures that are very handy when developing a complex
system like ours.

Firg¢ of dl, Lingo dlows us to define behaviours with sHf-contained scripts. These
behaviours have properties and methods (cadled handlers in Lingo), and are attached to
graphica objects on the interface. A behaviour can be reused with various graphical objects.
For ingance, we have a button behaviour that is used for every single button in the system.
Secondly, Lingo has object-based scripting capabilities, called parent-child scripting. In
parent-child scripting, parent scripts are cass definitions in that they describe how a
theoretical entity should behave. On the other hand, child scripts create an instance of the
parent scripts. Inheritance is made possible with ancestor scripts, which are the equivaent of
a super class. Lingo dlows for multiple inheritance, Snce parent script can have more than
one ancedtor. Like behaviours, child objects can be associated with physica objects, but they
can aso remain abstract.

This pseudo object-orientation dlowed us retan the underlying architecture that we had
developed with an object-oriented paradigm in mind, adapting it as needed. For example, a

focusable behaviour is atached to dl GUI widgets - buttons, text fields, drop down ligt ... -
that can receive the focus, and thus have the obligation to inform the focus manager when
they did. In addition, they al have an action script atached to them, to be caried when
activated. However, we had to let go the idea of a purely object oriented system in order to
make efficdent use of Director's capabilities. For instance, the help, and options objects are
kept, but not coded as parent-child scripting. Ingtead, their responsbilities are coded in
separate director movies, which make them sdf-contained, encapsulated and modular, kut not
purely object-oriented. With Director, we developed prototypes which were refined and
iteratively became the red system. The architecture - adapted for Director - was implemented
without excessive trouble.

A sngpshot of the main board is shown as asmple examplein Figure 3.

Vision

Number
Search
Drill

I - -
K play Sounds

n o Memory

K pisplay Ti

LA TS Challenge

[pisplay Instructions

Figure 3: The primary screen for "Logical Sequence"

S. CONCLUSION

We describe the development of INDIGO to assig in the rehabilitation of those who have
uffered serious traumatic brain injuries. It is shown that it is criticad to incorporate the best
ideas of gragphic desgn and HCI into the development process if we are to ensure the high
levd of usability for the sysem. This is absolutdy criticd when many of the usars will be
auffering from a lack of ability to concentrate, diminished memory capacity and sSmilar
difficulties as a result of ther injuries. INDIGO is now in use and evauation a the Gorge
Road Hospitd in Victoria and following the evauation and any resulting modifications, it
will be considered for distributions to hospitals across North America.

REFERENCES

[Booch 94] Grady Booch, Object-Oriented Analysis and Design with Applications, Addison
Wesley, 1994 (1SBN 0805353402).

[Callins 95] D. Collins, Designing Object-Oriented User Interfaces, Benjamin-Cummings,
1995 (ISBN 080535350).

[Kapor 90] Mitchdll Kapor, A Software Design Manifesto,
http://Mmww.kapor.com/homepages/mkapor/Software Design Manifeso.html, 1990.

[Laurel 90] Brenda Laure, The Art of Human-Computer Interface Design, Addison-Wedey,
1990 (ISBN 0201517973).

[Mayhew 91] Deborah J. Mayhew, Principles and Guidelines in Software User Interface
Design, Prentice Hall, 1991 (ISBN 0137219296).

[Mullet 95] Kevin Mullet, Designing Visual Interfacess. Communication Oriented
Techniques, SunSoft Press, 1995 (ISBN 0133033899).

[Marion 99] Dondd W. Marion, Traumatic Brain Injury, Thieme Medica, 1999 (ISBN
0865777276).

[Winograd 96] Terry Winograd, Bringing Design to Software, ACM Press, Reading, Mass.
And Addison-Wedey, 1996 (ISBN 0201854910).

