6th ERCIM Workshop " User Interfacesfor All" L ong Paper

I ntention-guided Web Sites: A New Per spective on Adaptation

Matteo Baldoni, Cristina Baroglio, Alessandro Chiarotto,
Alberto Martelli, and Viviana Patti

Dipartimento di Informatica— Universtadegli Studi di Torino
C.s0 Svizzera, 185 —1-10149 Torino (Itdy)
Tel. +39 011 670 6711, Fax. +39 011 751603
E-mal: { baldoni,baroglio,patti,mrt} @di.unito.it
URL: http://www.di.unito.it/~alice

Abstract. Recent years withessed a rapid growth of multimedia technologies for offering information
and services on the internet. One of the many problems that are to be faced in this context is the great
variety of possible users and the consequent need to adapt both the presentation of information and
the interaction to the specific user's characteristics.

There is a general agreement that an adaptive web system should keep a model of the user's intentions,
interests, and preferences, nevertheless, most of the research on adaptive web systemsis based on the
idea of associating each user with a“user model” and to dynamically build web pages, based on the
profile given by that model. However, for the sake of a more complete adaptation -especialy at the
navigation level- it seems necessary to give a greater importance to the user's intentions both at the
beginning of and during the interaction with the system. In our view this aspect of adaptation is
currently underestimated. For achieving a dynamical site generation which is guided by the user's
intentions, the system should keep track of such intentions and of their evolution during the interaction,
and it should use them during its reasoning, when it plans dynamically personalized navigation routes.
Thisisthetopic of our current research, whose main lines are presented in this article.

1. INTRODUCTION

Recent years witnessed a rapid expandon of the use of multimedia technologies, the web in
particular, for the most various purposes. advertisement, information, communication, commerce and
the digtribution of services are just some examples. One serious problem due to the variety of the
users is to find a way for adapting the presentation to the person who requested it. The most

advanced solutions [Wahlster 89, McTear 93, Ardissono and Goy 99, De Caralis 98, De Caralis
99] dart from the assumption that adaptation should focus on the user's own characterigtics, thus,
though in different ways, they dl try to associate the user with a reference prototype (also known as
the “user model”), and then adapt the presentation to such a prototype. The association is done
either a priori, by asking the user to fill aform, or little by little by inducing preferences and interests
from the user's choices. In some cases, such asin the SeTA project [Ardissono et al. 99b], ahybrid
solution is used where, firgt, an a priori modd is built and, then, it is refined by exploiting the user's
choices and selections.

In our view, such solutions lack one important festure: the representation of the user's “intentions’

(or gods). In many systems the user is invited to write information about him/hersaf (education, job,
etc.), which alows the system to build a user modd and adapt the presentation to it but the user
mode lacks a component devoted to the representation of the user's intentions, which change at
every connection. Even in the cases when the system builds (or refines) the model based on the
choices that are taken in the various connections, it is not possible to have a complete adaptation.
Let us suppose, as an example, that | access to an on-line newspaper for some time, dways
searching for sport news. One day, after | have heard about a terrible accident in some foreign

CNR-IROE, Florence, Italy 25-26 October 2000

country, | access to the newspaper for getting more information. If the system has, meanwhile,
induced that my only interest is sport, | could both have difficulties in getting the information I'm
interested in and have it presented at a too shdlow leve of detail, with respect to my current and
red interest. If the system | interact with associated a model of my intentions with one of the user,
this kind of inconvenient would not happen because the system would first of dl try to capture my
god for the current connection (it would not limit its reasoning to my generic interests only) and only
after it would be able to adapt the presentation to me.

Our research dms a addressing this deficit, by building a web system that, during the interaction
with the user, adopts the user's gods in order to achieve a more complete adaptation.One
fundamenta characterigtic of this gpproach is that the two actors of the interaction, the user and the
system, “cooperate’ to the solution of a problem which for them is now a*common problem”. In a
way, it is as the sysem extended the usar's competence with its own, which is related to the
goplication domain. More technicdly, we study the implementation of web dtes which are
“dructurdess’, depending their shape on the purposes that the sSingle users have. In different words,
the structure of the web dte depends on the interaction between the user and a server-sde agent
and such an interaction is findized to satisfy a usar's need or, better, higher “intentions’. When a
user connects to a Ste of this kind (s)he does not access to a fixed graph of pages and links but
interacts with a program (it will be a software agent) which, starting from a knowledge base specific
to the dte (a data base) and from the requests of the user, builds an ad hoc dructure. This is a
difference with respect to current dynamic web sSites, where pages are dynamicaly constructed but
not the site structure. In our gpproach, such a structure corresponds to a plan aimed a pursuing
the user's gods. So, the user's god is the bias that orients the presentation of domain-dependent
information (text, images, videos and so forth) which are contained in a knowledge base. This
gpproach is “orthogond” to the one based on user models, which is dready widdly studied in the
literature.

The approach that we propose brings dong various innovations. From a humar machineinteraction
perspective, the user will not have to fill forms where pieces of information which (s)he does not fed
useful to explore the Ste are requested (for instance, his’her education). Moreover, the system will
not redtrict its answers to a user modd which is either fixed or past-oriented; other advantages are
expected on build-modify-update process of the web dte. In order to modify a classica web ste,
one has to change the contents of the pages and the links between them. In our case, the Site does
not exist as a given sructure, there exist data contained in a data base, whose maintenance is much
ampler, and there exists a program (the agent's program), which islikely to be changed very rarely,
snce most of changes are related to the data and to the structure by which they are presented, not in
the way this structure is built. Last but not least, this approach dlows a fast prototyping of Stes as
wel as it dlows the vaidation of how the information is presented, in a way Smilar to whet is
normaly done with programs.

Seller (asking): -What do you need the computer for?

Client: -1 would use it for multimedia purposes.

Seller (thinking): -Wadll, let me think, he needs a configuraion with a huge monitor, any kind of
RAM, any kind of CPU, a sound-card, and a modem. But he may tave
some of these components. Let's list them.

Seller (asking): -Do you dready have any of the listed components?

Client: -Yes, | have afast CPU and a sound-card.

Seller (asking): -Do you have alimited budget?

Client: -Yes, 650 Euro.
Seller (thinking): -He needs a monitor, RAM and a modem. | need to plan according to his
needs, budget and current availability of the componentsin the store.

Seller (asking): -1 have different configurations that satisfy your needs. Let me ask first which of
the listed RAMsyou prefer.
Client: -1 prefer to have 128MB of RAM.

Seller (informing): -1 propose you this configuration. Do you likeit?

Table 1: Example of dialogue between acliert and asdler.
2. APPROACH AND CASE STUDY

We are currently tackling the congtruction of structereless intention-guided web stes, by exploiting,
as a caxe sudy, the congruction of a virtua computer seller. Computer assembly is a good
gpplication domain because the world of hardware components is rapidly and continuoudly evolving
so that, on the one hand, it will be very expensive to keep a more classica (datic) web dte up-to-
date; on the other hand, it is unlikely that clients are equaly up-to-date and know the technica
characteristics or even the names of processors, motherboards, buses, and so forth. It will aso
alow comparison with the literature because this domain has been used in other works, such as
[Magro and Torasso, 00].

Often the dient only knows what (s)he needs the computer for. Sometimes the desired use belongs
to a category (e.g. world processing or internet browsing), sometimes it is more peculiar and maybe
related to a specific job (e.g. use of CAD systems for design). In ared shop the choice would be
taken thanks to a dialogue between the dlient and the sdler (see Table 1 for an example), a
diglogue in which the latter tries to understand the functiondities the client is interested in, proposing
proper configurations. The dient, on the other hand, can either accept or refuse the proposals,
maybe specifying further details or condraints. Every new piece of information will be used by the
sdler to converg towards the optimal proposal.

In the case of on-line purchase, it is reasonable to offer a Smilar interaction. More formdly, the
sdler and the client have a common god: to build an object, in the specific case a computer, by
joining their competences, which in the case of the sdller istechnica whereas in the case of the dient
is related both to the reasons for which (S)he is purchasing that kind of object and to higher
condraints. The sdller usudly leads the pursuing process, by gpplying a plan amed a sdling. The
god of such aplan isto find a configuration which satisfies al the congraints. Observe that, dthough
the fina purpose is dways the same, the variety of the possble Stuations is so wide that it is not
convenient to build a single, generd, and complete plan that can be used in al the cases, onthe
contrary it is better to build the plan depending on the current conditions.

The virtud sdler isimplemented as a software agent, which can be seen as a program that creates
the dgte a the moment, based both on an agpplication-domain knowledge base and on the user's
intentions. Formalisms for representing and reasoning on intentions have been studied in the fiedd of
Naturd Language, with the am of building cooperaive and autometic didogue systems, which
recognize the intentions of the human interlocutor and use them as a guide for answering in an
appropriate way (see, for instance [Bretier and Sadek, 97]).

Our focus is not on recognizing or infering user's intentions. User's needs are taken as input by the
software agent, that uses them to generate the gods that will drive its behaviour. The novelty of our
goproach stands in exploiting panning capabilities not only for didog act plannint, but aso for

building web dte presentation plans guided by the user's god. In this perspective the structure of the
gte is build by the system & a conditional plan, and according to the initia user's needs and
congraints. The execution of the plan by the system corresponds to the navigation of the site, where
the user and the system cooperate for building the configuration satisfying the user's needs. Indeed,
during the execution the choice between the branches of the conditiond plan is determined by means
of theinteraction with the user.

3. THE AGENT PROGRAMMING LANGUAGE

The notion of computational agent is centrd in atificid intdligence (Al), because it supplies a
powerful abgtraction tool for characterizing complex systems, Stuated in dynamic environments, by
usng mentaigtic notions such as beliefs intentions, and desires [Rao and Georgeff, 91]. In this
perspective, we describe a system in terms of its beliefs aout the world, its gods, and its
capabilities of acting; the system must be able to autonomoudy plan and execute action sequences
for achieving its purposes.

Reasoning about the effect of actions in a dynamicaly changing world is one of the main problems
that must be faced by inteligent agents. It is true, even if we congder the internd dynamics of the
agent itsdf, i.e. the way it updates its bdiefs and its gods, that can be regarded as the result of
execution of actions on the mentd Sate.

In this section, we briefly describe DyLOG, a language for programming agents based on a logica
theory for reasoning about actions and change in a logic programming setting, referring to the
proposd in [Badoni et al., 97], and its extenson to ded with complex actions and knowledge-
producing actions [Baldoni et al., 98a, Badoni et al., 00]. We will dso show how to useit in order
to develop web applications that require planning capabilities. As an example, we will pecify our
virtud sdler as a software agent.

DyLOG dlows one to specify an agent's behavior by defining both a set of smple actions that the
agent can apply (they are defined in terms of their preconditions and effects) and a set of complex
actions (procedures), built upon smple ones. However, the fundamenta characteristic that makes
this language particularly interesting for agent programming is thet, being based on aformd theory of
actions, it can deal with reasoning about actions effectsin a dynamicaly changing environment and,
as such, it supports planning. We will better explain this point in Section 3.4.

The language is based on a modal action theory that has been developed in [Giordano et al., 00,
Bddoni et al., 97, Bddoni et al., 98a, Bddoni et al., 00]. It provides a nonmonotonic solution to
the frame problem by making use of abductive assumptions and it deds with the ramification
problem by introducing a “causdity” operator. The adoption of dynamic logic or a modd logic to
ded with the problem of reasoning about actions and change is common to many proposals, such as
for ingance [Cadtilho et al. 97, De Giacomo and Lenzerini 95, Giordano et al. 98, Prendinger and
Schurz 96, Schwind 97], and it is motivated by the fact that modd logic dlows a very naturd
representation of actions as sate trangtions, through the accessibility relation of Kripke structures.
Since the intentiond notions (or attitudes), which are used to describe agents, are usudly
represented as moddities, our moda action theory is aso well suited to incorporate such attitudes.
The DyLOG interpreter (available at the address ht t p: / / www. di . unito. it/ ~al i ce) hasbeen
implemented in Sicstus Prolog, thus a specification in DyLOG can be executed by this interpreter.
Such an interpreter is a Sraightforward implementation of the proof procedure of the language. In
this paper we use DyLOG as a language for building web gpplications which require planning
capabilities. In particular our aim isto use the ahility of a cognitive agent to autonomoudy reason on

its own behavior in order to ded with adaptivity at the navigation level, i.e. to dynamicdly
generate a Ste being guided by the user's godss that are explicitly adopted through the interaction.
Indeed, in this domain, one of the most important aspects is to define the navigation possibilities
available to the user and to determine which page to display, based on the dynamic Stuation of the
interaction with the user.

3.1. Primitiveactions

In our action language each primitive action a ? A isrepresented by amodality [a]. The meaning of
the formulas [a]a isthat a holds after any execution of action a. The meaning of the formula<a>a
isthat thereis a possble execution of action a after which a holds. We dso introduce a moddity O,
which is used to denote those formulas that hold in dl states, thet is, after any action sequence.
A state consdts of aset of fluents, i.e. properties whose true value may change over the time. In
genera we cannot assume that the value of each fluent in a state is known to an agent, and we want
to be able of representing the fact that some fluents are unknown and to reason about the execution
of actions on incomplete dtates. To represent explicitly the unknown vaue of some fluents, in
[Bddoni et al., 00] we introduce an epistemic level in our representation language. In particular, we
introduce an epistemic operator B, to represent the beliefs an agent has on the world: Bf will meen
that the fluent f is known to be true, B? f will mean that the fluent f isknown to befase. FHuent f is
undefined in the case both ?Bf and ?B?f hdd. We will write u(f) for ?Bf O?B?f. In our
implementation of DyLOG (and dso in the following) we do not explicitly use the epigemic
operator B: if afluent f (or its negation ?f) is present in a date, it is intended to be believed,
unknown otherwise. Thus each fluent can have one of the three values: true, false or unknown. We
use the notation u(f)? to test if the fluent f isunknown (i.e. to test if neither f nor ?f is present in the
state).
Smple action lawsare rules that alow to describe direct and indirect effects of primitive actions on
a date. Badcdly, smple action clauses conast of action laws, precondition laws and causal
laws
Action laws define direct effects of primitive actions on a fluent and dlow actions with
conditiond effects to be represented. They have the form O(Fs ® [a]F), where aisa
primitive action name, a is afluent, and Fsisafluent conjunction, meaning that action a has
effect on F, when executed in a state where the fluent preconditions Fs hold.
Precondition lawsdlow action preconditions, i.e. those conditions which make an action
executable in a date, to be specified. Precondition laws have foom O(Fs ® <a>true),
meaning that when the fluent conjunction Fs holds in a Sate, execution of the action ais
possiblein that state.
Causal laws are used to express causa dependencies among fluents and, then, to describe
indirect effects of primitive actions. They have the form O(Fs® F), meaning that the fluent
F holdsif the fluent conjunction Fs holds too.*
In DyLOG we have adopted a more readable notation: action laws have the form “a causes F if
Fs’, precondition laws have the form “apossible if Fs’ and causd rules have the form “F if Fs”.
Let us congder the example of the sdller fully described in Section 3.5. One of the actions of our
sdling agent is the fallowing:

! In alogic programming context we represent causality by the directionality of implication. A more general
solution, which makes use of modality "causes”, has been provided in [Giordano et al., 00].

add(monitor(XX)) : add the monitor X to the current configuration

(1) add(monitor (X)) possibleif true.

(2) add(monitor (X)) causes has(monitor (X)).

(3) add(monitor (X)) causesin_the_shopping_cart(monitor (X)) if true.

(4) add(monitor (X)) causes credit(Bl) if get_value(X,price,P) O credit(B) O (B1isB+P).
Rule (1) states that the action add(monitor (X)) is dways executable. Action laws (2)-(4) describe
the effects of the action's execution: adding the monitor of type X causes having the monitor X inthe
configuration under congtruction (2), having it into the shopping cart (3), and updating the current
credit by summing the monitor price. Andogoudy, we define the other sdller's primitive actions of
adding to the configuration a CPU, a RAM, or a peripheral.

An action can be executed in a Sate s if the preconditions of the action hold in s. The execution of
the action modifies the state according to the action and causa laws. Furthermore we assume that
the value of afluent persasts from one state to the next one, if the action does not cause the vaue of
the fluent to change.

In generd, the execution of an action will have an effect on the environment, such as moving a robot
or, in our case, showing a web page to the user. This can be specified in DyLOG by associating
with each primitive action some Prolog code which implements the effects of the action on the world
(in our case the web server is requested to send a given web page to the browser). Therefore, when
an agent executes an action it must commit to it, and it is not allowed to backtrack by retracting the
effects of the action. Thisis the main difference with respect to the use of the language for reasoning
about actions, where the agent can do hypothetical reasoning on possible sequences of actions by
exploring different aternatives.

3.2. Theinteraction with the user: sensing and suggesting actions

The interaction of the agent with the user is modded in our language by means of actions for
gathering inputs from the externd world. In fact, in [3] we studied how to represent a particular kind
of informative actions, called sensing actions, which alow an agent to gather knowledge from the
environment about the vaue of a fluent F. Direct effects of sensing actions are interpreted as
inputs from outside that are not under the agent control. They are represented eng knowledge
laws, that have form “s senses F”, meaning that action s causes to know whether F holds? In our
goplication domain we are interested in inputs coming from the user. Then, getting a user input, can
be seen as the result of sensing actions executed by the agent, that, after requesting the user to enter
avaue for afluent (true or fasein case of ordinary fluents, avaue from the domain in case of fluents
with an associated finite domain), senses the user's answer. Preconditions and indirect effects of
sensing actions are expressed by precondition laws and causal rules, having the form defined above.
In our running example, for ingtance, we introduce the senaing action ask_if_has monitor(M), for
knowing whether the user has dready a monitor of type M:

ask_if _has _monitor(M) possibleif u(has(monitor(M))).

ask_if_has_monitor(M) senses has(monitor (M)).
Specificdly for this gpplication domain, we have aso defined a specid subset of sensing actions,
cdled suggesting actions. The difference wr.t. norma sensing actions is that while those offer as
dternative vaues for a given fluent its whole domain, suggesting actions offer only a subset of it, that
is those values that lead to fulfill the goals. For representing the effects of such actions we use the

% See [Baldoni et al., 00] for the translation of knowledge lawsin the modal language.

notation “s suggests F”, meaning that action s suggests a possibly selected set of vaues for fluent F
and causes to know the value of F. Asan example, our virtual sdller can perform a suggesting action
to offer to the user the choice among the available kinds of monitor:

offer_monitor_type possible if true.

offer_monitor_type suggests type _monitor (X).
We use the results of the interaction with the user to generate the godls that will guide the sdling
agent behavior in order to build a computer satisfying the user's needs. We mode it by causa rules,
by describing the adoption of a god as the indirect effect of requesting user's preferences. As an
example, the answer the agent gets from the suggesting action offer _computer _type about the kind
of computer that is requested (see Section 3.5 for a description), has as an indirect effect the
generation of the god to have a computer with those characterigtics:

goal (has(X)) if requested(X).
Let us suppose that the agent has to assemble a computer for multimedia
(requested(computer (multimedia)) is in the state), then, the causal rule above will generate the
god goal (has(computer (multimedia))). This main god will generate a st of sub-gods to get the
needed components to built the requested computer, by means of the appropriate ingtantiation of
the fallowing causd rule

goal(has(C)) if goal (has(computer (X)) O component(X),C).

3.3. Procedures

Procedures define the behavior of complex actions. Complex actions are defined on the basis of
other complex actions, primitive actions, senang actions and test actions. Test actions are needed
for testing if some fluent holds in the current state and for expressing conditional complex actions.
They are written as “(Fs)?’, where Fsisafluent conjunction. A procedure is defined asacollection
of procedure clauses of the form

PoisSpy, ..., pn (N3 0)
where py is the name of the procedure and p;, i = 1, ..., n, isether aprimitive action, or asensng
action, or a test action, or a procedure name (i.e. a procedure call).® Procedures can be recursive
and can be executed in agod directed way, Smilarly to standard logic programs.
From the logica point of view procedure clauses have to be regarded as axiom schemas of the
logic. More precisdly, each procedure clause po is ps, ..., Pn, Can be regarded as the axiom schema
<P><ps> ... <Pp>j ? <po>j .t Its meaning is that if in a state there is a possible execution of p,
followed by an execution of p,, and so on up to p,, then in that Sate there is a possible execution of
Po-
Procedures can be used to describe the behaviour of an agent. In particular we assume the
behaviour of arationa agent to be driven by a set of goals. For each god, the agent has a st of
procedures (sometimes called plans) for achieving the given god.
The behaviour of our sdling agent can be described by giving a collection of procedures for guiding
the interaction with the user and for achieving various gods. The agent behaviour is driven by godls,
which are fluents having form goal (F). They are generated by the interaction with the user by means
of causd rules. After adopting agod goal (F), an agent acts so to achieve it, until it believesthe god

% Actually inDylog can also be a Prolog goal.
* These axioms have the form of rewriting rules asin grammar logics. In [Baldoni et al., 98] decidability results for
subclasses of grammar logics are provided, and right regular grammar |ogics are proved to be decidable.

is fulfilled (i.e. until it reaches a date where F holds). This corresponds to adopt a blind
commitment strategy.
The way the agent assembles a computer is specified by procedure assemble that, until the
compuiter is believed assembled tries to achieve the god of getting a il missng component.

assemble is assembled?.

assembleis assembled?; achieve _goal; assemble.
Note that only when dl of the gods to get the necessary components are fulfilled, the main god to
have a computer to propose to the user is reached and the computer is considered assembled (see
in Section 3.5 causd rules (5),(6),(7) and (11)). Until there is ill a god to fulfill, the computer is
considered not assembled.
Procedure achieve _goal dlows the agent to select in a non-deterministic way the god of adding a
component (monitor, CPU, RAM or peripherd) to the specific computer that is being built. When
the agent has the god to get a generic component, it has to choose among the available types, so it
interacts again with the user to decide what specific component to add according to the user's
preferences.

achieve_goal is goal (has(monitor(generic)))?; offer_monitor_type; type_monitor (X)?

add(monitor (X)).

achieve_goal is goal (has(monitor(X)))?; (X ? generic); add(monitor (X)).

achieve_goal is goal (has(ram(generic)))?; offer_ram_type; type_ram(X)?, add(ram(X)).

achieve goal is goal(has(ram(X)))?; (X ? generic); add(ram(X)).

As pointed out before, whenever the interpreter executes an action, it commits to that action, and
cannot backtrack. Thus procedures are determinigtic, or, a mog, they can implement a kind of
don't care non determinism.

The above formulation of the behaviour of the agent, has many smilarities with agent programming
languages based on the BDI paradigm such as dAMARS [d' Inverno et al., 97]. Asin dAMARS, plans
aretriggered by goas and are expressed as sequences of primitive actions, tests or goals.

3.4. Planning

Up to now we have assumed that DyLOG procedures which specify the behaviour of an agent are
executed by an interpreter as in usua programming languages. However a rationd agent must aso
be able to cope with complex or unexpected dtuations, by reasoning about the effects of a
procedure before executing it.

In generd, a planning problem amounts to determine, given an initid sate and agod Fs, if thereis
a sequence of actions that, when executed in the initid date, leads to a sate in which Fs holds. In
our context, in which complex actions can be expressed as procedures, we can consder a specific
ingance of the planning problem in which we want to know if there is a possible execution of a
procedure p leading to a sae in which some condition Fs holds. In such a case the execution
sequence is not an arbitrary sequence of atomic actions but it is an execution of p. This can be
formulated by the query <p>Fs, which asks for a terminaing execution of p (i.e. afinite action
sequence) leading to astate in which Fs holds.

The execution of the above query returns as a side-effect an answer which is an execution trace
"ai, &, ..., an, 1.6 a primitive action sequence from the initid date to the find one, which
represents alinear plan.

To achieve this, DyLOG provides a metapredicate plan(p, Fs, as), where p is a procedure, Fs a
god and as a sequence of primitive actions. The procedure p can be nondeterministic, and plan will
extract from it a sequence as of primitive actions, a plan, corresponding to a possible execution of
the procedure, leading to a state in which Fs holds, starting from the current state. Procedure plan
works by executing p in the same way as the interpreter of the language, with a main differences:
primitive actions are executed without any effect on the externd environment, and, as a
consequence, they are backtrackable.
Instead of smply obtaining any plan, procedure plan could extract a best plan, according to some
optimality criterion. In our case, plan uses iterative degpening to find the plan with the minimd
number of actions, but it might be modified to make use of some domain dependent heurigtics.
Since procedures can contain sensing actions, whose outcomes are unknown a planning time, dl the
posshble dternatives are to be taken into account. Therefore, by applying DyLOG planning
predicate to a procedure that contains sensing actions we obtain a conditional plan whose branches
correspond to the possible outcomes of senaing.
The top level procedure, build a computer, describing the behavior of the sdling agent, is
reported hereafter. It makes use of the interleaving of planning and execution, by using the
metapredicate plan.
build_a computer is get_user_preferences; get_max_value_budget;
plan(assembly,credit(C) O budget(B) O (C £ B), P); P.
&,

I onir i

L

| agdiman werisinct i

| ERRL IR W PR TR TR LA TN RO T oty 4 [T] |
et P o, et B o R L o B e s, LR

Figure 1 Theresult of the planning process when the user does not have any component
and has a budget of 650 Euro.

Fird, the agent gtarts to interact with the user to adopt his goals, asking what kind of computer the
user isinterested in, checking if the user has some of the components that are needed to assemble a
computer with those characteristics (get_user_preferences), geting information about budget
limitations @et_max_value budget). Second it starts to plan how reach the godls, i.e. how to
assemble the missing components of the computer, predicting aso future interactions to be guided

by the users preferences in the assembling process. Planning is needed to find configurations taking
into accounts two interacting gods. the god to assemble a computer satisfying the user needs and
the god to consder only configuration affordable by the user's budget. Findly, the agent executes
the conditiond plan resulted from the planning process. Let us assume to execute
build_a_computer and to be in the case the user requested a computer for multimedia. In Figure 1
we show one possible result of the planning process, given pecific user's needs and budget.

3.5. Avirtual computer seller

Let us see, as an example, how it is possible to implement a program that crestes a virtud
computer sdller. The example is, for our choice, smple and a computer is represented only in terms
of its components: "cpu’”, "ram”, "monitor” plus afew peripherds. It is possible to buy three different
kinds of computer: one for CAD processing, one for multimedia and one for word processng. Each
of them is characterized by a different configuration.

Finite domain specification

computer (X) domain (X in [cad,multimedia,wordprocessing]).
budget(X) domain (X in [450,550,650,750,850,1000]).
reguested(X) domain

(X'in [computer (cad),computer (multimedia),computer (wor dprocessig)]).
type_monitor (X) domain (X in [database: get_article(category(monitor),X)]).
type _ram(X) domain (X in [database: get_article(category(ram),X)]).
type_cpu(X) domain (X in [database: get_article(category(cpu),X)]).
peripheral(X) domain (X in [database: get_article(category(peripheral),X)]).

Knowledge Base on application domain
component(computer (cad), peripheral (plotter)).
component(computer (cad), cpu('pl11800")).
component(computer (cad), monitor ('19inch’)).
component(computer (cad), ram('256Mb")).
component(computer (multimedia), peripheral (modem)).
component(computer (multimedia), peripheral (audio)).
component(computer (multimedia), monitor ('19inch’)).
component(computer (multimedia), ram(generic)).
component(computer (multimedia), cpu(generic)).
component(computer (cad), peripheral (printer)).
component(computer (cad), cpu(generic)).
component(computer (cad), monitor (generic)).
component(computer (cad), ram(generic)).

Main procedure The behavior of our sdling agent is described a the high-leve by the man
procedure, reported hereafter.

build_a computer is get_user_preferences;get_max_value budget;
plan(assemble, credit(C) O budget(B) O (C £ B),P);P.
get_user_preferencesis ask _computer_type; goal(has(ram(T))?; ask_has ram(T);

goal (has(monitor (T))?; ask_has_monitor(T);
goal (has(ram(T))?; ask_has ram(T).

Suggesting actions The following suggesting actions dlow to acquire information about the user's
needs and preferences. about the budget limitation the user has, the kind of computer the user would
like to buy and about the kind of components the user prefers among the available ones.

get_max_value_budget: offer a set of maximum budget and get the vaue of budget(B)
get_max_value budget possible if true.
get_max_value budget suggests budget(B).
offer_computer_type: offer the avalable kinds of computer and get the preference about the
requested computer
offer _computer_type possible if true.
offer_computer_type suggests requested(X).
offer_monitor_type: offer the available monitors and get the preference about the monitor type
offer_monitor_type possible if true.
offer_monitor_type suggests type _monitor (X).
offer_ram type: offer the available RAM's and get the preference about the ram type
offer_ram type possible if true.
offer_ram_type suggests type ram(X).
offer_cpu_type: offer the available CPU's and get the preference about the monitor type
offer_cpu_type possible if true.
offer_cpu_type suggests type cpu(X).

Sensing actions The following senaing actions dlow the program to know whether the user dready
has some of the components the sdller thinks to be necessary to assemble a computer satisfying the
user's needs. The answer to these queries dlowsto revise the set of goadsthe sdler wantsto achieve
for satisfying the user, taking in account new information about the user needs. In fact, in case of
postive answer, the sdler will update its gods deeting, if necessary, the god to “get the
component” that the user dready has.

ask_if _has monitor(T): ask if the user has amonitor of type T
ask if _has_monitor(T) possible if u(has(monitor(T))).
ask_if_has monitor(T) senses has(monitor(T)).

ask if has cpu(T): ak if theuser hasacpu of type T
ask _if _has cpu(T) possible if u(has(cpu(T))).
ask_if _has _cpu(T) senses has(cpu(T)).

ask if has ram(T): ask if theuser hasaram of type T
ask if _has ram(T) possible_if u(has(ram(T))).
ask_if has ram(T) senses has(ram(T)).

Causal rules The knowledge about the computer obtained by the first interaction generates amain
god of the form goal (has(computer(T)), (clauses (1), (2)). The main goa generates a set of sub-
gods for getting the needed components (clause 3). A god goal(F) is abandoned only when the
agent reaches a state where F is believed (clause 4). When dl the sub-gods to get the necessary
components are fulfilled, aso the main god to have a computer to propose to the user is reached

(clauses from (5) to (7)) and the computer is consdered assembled (clause 11). Until thereis ill a
god to fulfill, the computer is consdered not assembled (clause 12).

(1) goal(has(X))) if requested(X) O u(has(computer(X))).

(2) goal(has(X))) if requested(X) O ? has(computer (X)).

(3) goal(has(C)) if goal (has(computer (X)) O component(computer (X),C).

(4) ? goal(has(X)) if has(X).

(5) has(computer (cad)) if has(peripheral (plotter)) O has(monitor('19inch’)) O

has(ram('256Mb")) O has(cpu('pl11800")).

(6) has(computer (multimedia)) if has(peripheral (modem)) O has(peripheral(audio)) O
has(monitor (‘19inch’)) O has(ram(generic)) O
has(cpu(generic)).

(7) has(computer (wordprocessing)) if has(peripheral (printer)) O has(monitor(generic)) O

has(ram(generic)) O has(cpu(generic)).

(8) has(cpu(generic)) if has(cpu(X)).

(9) has(ram(generic)) if has(ram(X)).

(20) has(monitor (generic)) if has(monitor (X)).

(12) assembled if has(computer (X)).

(12) ? assembled if goal (X).

Achieving goals The way the agent behaves to assemble a compuiter is specified by the procedure
assemble that, until the computer is believed assembled, tries to achieve the god to get asill missng
component.

assembleis assembled?.

assaembleis ? assembled?; achieve _goal; assemble.

achieve goal is goal(has(monitor(generic)))?;offer_monitor\ type;
type_monitor (X)?; add(monitor(X)).

achieve goal is goal(has(monitor(X)))?; (X ? generic)?;add(monitor(X)).

achieve _goal is goal(has(ram(generic)))?; offer_ram type;
type _ram(X)?; add(ram(X)).

achieve _goal is goal(has(ram(X)))?; (X ? generic)?; add(ram(X)).

achieve goal is goal(has(cpu(generic)))?; offer_cpu_type;
type_cpu(X)?; add(cpu(X)).

achieve goal is goal(has(cpu(X)))?; (X ? generic)?;add(cpu(X)).

achieve _goal is goal(has(peripheral(X)))?; add(peripheral (X)).

Atomic actions The following Smple action laws define the primitive actions thet alowsto add the
sngle components (a monitor, a RAM aperiphera or a CPU) to the current configuration.

add(monitor (X)) possible if true.

add(monitor (X)) causes has(monitor (X)) if true.

add(monitor (X)) causes credit(Bl) if get_value(X,price,P) O credit(B) O
(Blis B+ P).

add(ram(X)) possible if true.

add(ram(X)) causes has(ram(X)) if true.

add(ram(X)) causes credit(Bl) if get_value(X,price,P) O credit(B) O
(B1 isB+ P).

add(cpu(X)) possible if true.

add(cpu(X)) causes has(cpu(X)) if true.

add(cpu(X)) causes credit(Bl) if get_value(X,price,P) O credit(B) O
(BlisB+ P).

add(peripheral (X)) possible if true.

add(peripheral (X)) causes has(peripheral (X)) if true.

add(peripheral (X)) causes credit(Bl) if get value(X,price,P) O credit(B) O

(BlisB+ P).
add(C) causesin_the shopping_cart(C) if true.

4. IMPLEMENTATION (WORK IN PROGRESS)

In this section we will describe the virtua sdller as we are currently implementing it in order to work
in adient-server environment. We suppose that clients are commercial web browsers.

As we sad, the basic idea is to consder the web dte as a plan for satisfying the user's intentions.
Actudly the plan will be a conditional plan, i.e. there will be nodes in which a st of dternative
actions are possible. Each path will, in our case, correspond to a different computer configuration.
All configurations in the conditiond plan satisfy the user's intentions. The plan is built by the agent
program, which, in the case of our computer sdller is currently the one reported in Section 3.

After it was built, the plan is executed. Executing a conditiond plan implies following one of the
paths in the treg; only the part of the Ste corresponding to this path will actudly be built. The
execution of some of the actions in the path will affect only the data base that contains the
information about the components that are currently contained in the store. For instance, if acertan
processor was selected the agent has to decrease the number of available processors of that kind.
Other actions, those that correspond to a branching point, require a dialogue with the user.

Actudly, we handle a more generde Stuation in which many clients can connect to the server and
dart different, pardld purchases. Each client will be served by a dedicated sdling agent. Given a
client, the sdling-agent responsible for that client builds the conditiond plan starting from the dient's
expressed intentions. The nodes of the plan will correspond to the subsequent, foreseen aternative
states and possible actions.

We have sad that the interaction starts with the expresson of the dient's intentions, thet is what the
client is looking for (what it needs a computer for). Intentions can either belong to a st of
dternatives that was defined a priori (such as “internet browsing”) or they can be composed as a
DyLOG query on the web browser, and are sent to the web server (in our case Apache) of the
server machine. The web server properly dispatches the requests to the right DyLOG sdling agent
running in a Sicstus Prolog environment by passing through a java serviet, that works as an interface,
We used java serviets because it was not possible to directly embed Sicstus Prolog into the web
server in such away that sessions could be left open with the browsers. Our problem was that, as
we have partly mentioned and we will better see further on, the agent does not smply send the result
of its computation (the whole conditiona plan) to the client but it sends step by step partid results of
its computation, i.e. the single pages of the Ste, because the choice of which part of the ste to build
and explore is actudly up to the user. Furthermore, we had to manage the multi-user Stuaion in
which many clients are pardldy carrying on many conversations with as many prolog agents.

Let us now condder actions and, in particular, their execution. The most generd case isthe oneiin
which a st of aternatives for a given component is avalable. In our gpplication domain the choice
of which to choose is up to the user, so (he will be shown an HTML page containing the possble
dternatives. For each item an auxiliary page containing its technica characterigics will dso be
produced, so that the user can be made aware of the details that can help him/her to make hisher
mind. Such information is taken by the serviet from the component data base. In different words, the
agent sends to the servliet a command of the kind “visualize CPU1, CPU2" and the servlet produces
some HTML code that contains the information related to the two CPU's identified by CPU1 and
CPU2 in the data base plus the request to make a choice. Once an answer is returned from the
client, thisis passed on to the agent. So the execution of the agent's action consists of the following
geps. 1. produce HTML code related to the choice; 2. show such a code to the user; 3. walit for
feedback from the user. Afterwards the agent performs an action that is trangparent to the client, that
congsts in adding the new fact to the knowledge base and take it into account for passing to the next
dep: sending to the sarviet the information about which page to show next. All unsdected
dternatives are forgotten.

S. CONCLUSIONSAND FUTURE WORK

In this paper we have presented a new perspective on interface adaptation by tackling the problem
of the congtruction of adaptive web sites based on the user's intentions. This gpproach is orthogona
to the classcd approach of focusng on the user's modd and it is our opinion that a red adaptive
system should encompass both these aspects. We have shown how moda logic programming
languages can be used to define the behavior of an agent that builds the web ste on demand,
according to the needs of each client.

The work that we have presented is in progress. It started as an gpplication of DyLOG as an agent
programming language, and it is actudly the core of a wider project in which the agent will be
supplied dso with replanning capabilities. Replanning may seem usdless in a system that returns a
plan only if it does not fail. However, one must take into account aso the fact that the user may be
unable to fully express its intertions or it may become aware during the didogue of some
consequences of its initials choices that (S)he would like to change. In these cases the client should
be able to dert the system that (he is not interested in the options supplied by it and that maybe
new facts should be taken into account.

REFERENCES

[Ardissono and Goy, 994 L. Ardissono, A. Goy, Tailoring the interaction with users in eectronic
shops, in the 7th International Conference on User Modeling, 1999.

[Ardissono et al., 99b]L. Ardissono, A. Goy, R. Meo, G. Petrone, L. Console, L. Lesmo, C.
Simone, P. Toraso, A configurable system for the construction of virtual stores, World Wide
Web Journal, 2(3), 1999, pp. 143-159.

[Badoni et al., 97] M. Baldoni, L. Giordano, A. Martdlli, V. Patti, An Abductive Proof Procedure
for Reasoning about Actions in Modd Logic Programming, in the 2nd Inter national Workshop
on Non-Monotonic Extensions of Logic Programming, NMELP96, J. Dix and L. M.
Pereraand T. C. Przymusinski (eds), LNAI 1216, Springer-Verlag, 1997, pp. 132-150.

[Bddoni et al., 989 M. Bddoni, L. Giordano, A. Martdli, V. Patti, A Moda Programming
Language for Representing Complex Actions, in the Post-Conference Workshop on

Transactions and Change in Logic Databases, DYNAMICS98, Joint Int. Conference and
Symposium on Logic Programming, 1JCSLP'98, A. Bonner, B. Freitag, L. Giordano (eds),
Technica Report MP1-9808, 1998, pp. 1-15.

[Bddoni et al., 98b] M. Badoni, L. Giordano, A. Martdlli, A Tableau Caculus for Multimoda
Logics and Some (Un)Decidability Results, H. de Swart (ed), in TABLEAUX'98, LNAI-
1397, 1998, pp. 44-59.

[Baldoni et al., 00] M. Badoni, L. Giordano, A. Martelli, V. Petti, Reasoning about Complex
Actions with Incomplete Knowledges a Modd Approach. Technica Report 53/2000,
Dipartimento di Informatica, University of Torino, 2000.

[Bretier and Sadek, 97] P. Bretier, D. Sadek, A rational agent as the kernel of a cooperative
spoken didogue system: implementing alogica theory of interaction, in ECAI-96 Workshop on
Agent Theories, Architectures, and Languages (ATAL-96), LNAI series, Intelligent Agents
11, 1997.

[Cadtilho et al., 97] M. Cadtilho, O. Gasquet, A. Herzig, Moda tableaux for reasoning about
actions and plans, in European Conference on Planning (ECP'97), S. Stedl (ed), LNAI,
Springer-Verlag, pp. 119-130, 1997.

[De Carolis 98] B.N. De Caradlis, Introducing reactivity in adaptive hypertext generation, In 13th
Conf. ECAI'98, Brighton, UK, 1998.

[De Cardlis et al., 99] B. De Caradlis, F. de Rosis, D. Berry, |. Michas, Evauating planbased
hypermedia generation, in European Workshop on Natural Language Generation, Toulouse,
1999.

[De Giacomo and Lenzerini 95| G. De Giacomo, M. Lenzerini, PDL-based framework for
reasoning about actions, in Topics of Artificial Intelligence, Al*1A '95, LNAI-992, Springer-
Verlag, 1995, pp. 103-114.

[d'Inverno et al., 97] M. dinverno, D. Kinny, M. Luck, M. Wooldridge, A Forma Specification of
dMARS, in ATAL'97, LNAI-1365, 1997, pp. 155-176.

[Giordano et al., 98] L. Giordano, A. Martdli, C. Schwind, Dedling with concurrent actions in
modd action logic, in ECAI'98, 1998, pp. 537-541.

[Giordano et al., 00] L. Giordano, A. Martdli, C. Schwind, Ramification and causdity in a moda
action logic, Journal of Logic and Computation, 2000, to appear.

[Magro and Torasso, 00] D. Magro, P. Torasso, Description and configuration of complex
technical productsin avirtua store, in ECAI2000 Workshop on Configuration, Berlin, 2000.

[McTear, 93] M. McTear, User modelling for adaptive computer systems. a survey on recent
developments, Journal of Artificial Intelligence Review, 7, 1993, pp. 157-184.

[Prendinger and Schurz, 96] H. Prendinger, G. Schurz, Reasoning about action and change. a
dynamic logic approach, Journal of Logic, Language, and Information, 5(2), 1996, pp. 209-
245,

[Rao and Georgeff, 91] A.S. Rao, M.P. Georgeff, Modding rational agents within a BDI-
architecture, in KR-91, Morgan Kaufmann, 1991, pp. 473-484.

[Schwind, 97] C. B. Schwind, A logic based framework for action theories, Language, Logic and
Computation, J. Ginzburg, Z. Khasidashvili, C. Vogd, J-J. Levy, E. Vdlduv (eds), CSLI
publication, Stanford, USA, 1997, pp. 275-291.

[Wahister and Kobsa, 89] W. Wahigter, A. Kobsa, User moddls in didog systems, Springer-

Verlag, 1989.

