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Abstract. Recent years witnessed a rapid growth of multimedia technologies for offering information 
and services on the internet. One of the many problems that are to be faced in this context is the great 
variety of possible users and the consequent need to adapt both the presentation of information and 
the interaction to the specific user's characteristics. 
There is a general agreement that an adaptive web system should keep a model of the user's intentions, 
interests, and preferences, nevertheless, most of the research on adaptive web systems is based on the 
idea of associating each user with a “user model” and to dynamically build web pages, based on the 
profile given by that model. However, for the sake of a more complete adaptation -especially at the 
navigation level- it seems necessary to give a greater importance to the user's intentions both at the 
beginning of and during the interaction with the system. In our view this aspect of adaptation is 
currently underestimated. For achieving a dynamical site generation which is guided by the user's 
intentions, the system should keep track of such intentions and of their evolution during the interaction, 
and it should use them during its reasoning, when it plans dynamically personalized navigation routes. 
This is the topic of our current research, whose main lines are presented in this article. 

 
 
1.  INTRODUCTION 
 
Recent years witnessed a rapid expansion of the use of multimedia technologies, the web in 
particular, for the most various purposes: advertisement, information, communication, commerce and 
the distribution of services are just some examples. One serious problem due to the variety of the 
users is to find a way for adapting the presentation to the person who requested it. The most 
advanced solutions [Wahlster 89, McTear 93, Ardissono and Goy 99, De Carolis 98, De Carolis 
99] start from the assumption that adaptation should focus on the user's own characteristics, thus, 
though in different ways, they all try to associate the user with a reference prototype (also known as 
the “user model”), and then adapt the presentation to such a prototype. The association is done 
either a priori, by asking the user to fill a form, or little by little by inducing preferences and interests 
from the user's choices. In some cases, such as in the SeTA project [Ardissono et al. 99b], a hybrid 
solution is used where, first, an a priori model is built and, then, it is refined by exploiting the user's 
choices and selections. 
In our view, such solutions lack one important feature: the representation of the user's “intentions” 
(or goals). In many systems the user is invited to write information about him/herself (education, job, 
etc.), which allows the system to build a user model and adapt the presentation to it but the user 
model lacks a component devoted to the representation of the user's intentions, which change at 
every connection. Even in the cases when the system builds (or refines) the model based on the 
choices that are taken in the various connections, it is not possible to have a complete adaptation. 
Let us suppose, as an example, that I access to an on-line newspaper for some time, always 
searching for sport news. One day, after I have heard about a terrible accident in some foreign 



country, I access to the newspaper for getting more information. If the system has, meanwhile, 
induced that my only interest is sport, I could both have difficulties in getting the information I'm 
interested in and have it presented at a too shallow level of detail, with respect to my current and 
real interest. If the system I interact with associated a model of my intentions with one of the user, 
this kind of inconvenient would not happen because the system would first of all try to capture my 
goal for the current connection (it would not limit its reasoning to my generic interests only) and only 
after it would be able to adapt the presentation to me. 
Our research aims at addressing this deficit, by building a web system that, during the interaction 
with the user, adopts the user's goals in order to achieve a more complete adaptation.One 
fundamental characteristic of this approach is that the two actors of the interaction, the user and the 
system, “cooperate” to the solution of a problem which for them is now a “common problem”. In a 
way, it is as the system extended the user's competence with its own, which is related to the 
application domain. More technically, we study the implementation of web sites which are 
“structureless”, depending their shape on the purposes that the single users have. In different words, 
the structure of the web site depends on the interaction between the user and a server-side agent 
and such an interaction is finalized to satisfy a user's need or, better, his/her “intentions”. When a 
user connects to a site of this kind (s)he does not access to a fixed graph of pages and links but 
interacts with a program (it will be a software agent) which, starting from a knowledge base specific 
to the site (a data base) and from the requests of the user, builds an ad hoc structure. This is a 
difference with respect to current dynamic web sites, where pages are dynamically constructed but 
not the site structure. In our approach, such a structure corresponds to a plan aimed at pursuing 
the user's goals. So, the user's goal is the bias that orients the presentation of domain-dependent 
information (text, images, videos and so forth) which are contained in a knowledge base. This 
approach is “orthogonal” to the one based on user models, which is already widely studied in the 
literature. 
The approach that we propose brings along various innovations. From a human-machine interaction 
perspective, the user will not have to fill forms where pieces of information which (s)he does not feel 
useful to explore the site are requested (for instance, his/her education). Moreover, the system will 
not restrict its answers to a user model which is either fixed or past-oriented; other advantages are 
expected on build-modify-update process of the web site. In order to modify a classical web site, 
one has to change the contents of the pages and the links between them. In our case, the site does 
not exist as a given structure, there exist data contained in a data base, whose maintenance is much 
simpler, and there exists a program (the agent's program), which is likely to be changed very rarely, 
since most of changes are related to the data and to the structure by which they are presented, not in 
the way this structure is built. Last but not least, this approach allows a fast prototyping of sites as 
well as it allows the validation of how the information is presented, in a way similar to what is 
normally done with programs. 
 
Seller (asking):  -What do you need the computer for?   
Client:  -I would use it for  multimedia purposes.   
Seller (thinking):   -Well, let me think, he needs a configuration with a huge monitor, any kind of 

RAM, any kind of CPU, a sound-card, and a modem. But he may have 
some of these components. Let's list them.   

Seller (asking): -Do you already have any of the listed components?   
Client: -Yes, I have a fast CPU and a sound-card.   
Seller (asking): -Do you have a limited budget?   



Client: -Yes, 650 Euro. 
Seller (thinking):     -He needs a monitor, RAM and a modem. I need to plan according to his 

needs, budget and current availability  of the components in the store.   
Seller (asking):      -I have different configurations that satisfy your needs. Let me ask first which of 

the listed RAMs you prefer.   
Client:                      -I prefer to have 128MB of RAM.   
Seller (informing):   -I propose you this configuration. Do you like it?  
                                   ... 

Table 1: Example of dialogue between a client and a seller. 
 
2.  APPROACH AND CASE STUDY 
 
We are currently tackling the construction of structereless intention-guided web sites, by exploiting, 
as a case study, the construction of a virtual computer seller. Computer assembly is a good 
application domain because the world of hardware components is rapidly and continuously evolving 
so that, on the one hand, it will be very expensive to keep a more classical (static) web site up-to-
date; on the other hand, it is unlikely that clients are equally up-to-date and know the technical 
characteristics or even the names of processors, motherboards, buses, and so forth. It will also 
allow comparison with the literature because this domain has been used in other works, such as 
[Magro and Torasso, 00]. 
Often the client only knows what (s)he needs the computer for. Sometimes the desired use belongs 
to a category (e.g. world processing or internet browsing), sometimes it is more peculiar and maybe 
related to a specific job (e.g. use of CAD systems for design). In a real shop the choice would be 
taken thanks to a dialogue between the client and the seller (see Table 1 for an example), a 
dialogue in which the latter tries to understand the functionalities the client is interested in, proposing 
proper configurations. The client, on the other hand, can either accept or refuse  the proposals, 
maybe specifying further details or constraints. Every new piece of information will be used by the 
seller to converg towards the optimal proposal. 
In the case of on-line purchase, it is reasonable to offer a similar interaction. More formally, the 
seller and the client have a common goal: to build an object, in the specific case a computer, by 
joining their competences, which in the case of the seller is technical whereas in the case of the client 
is related both to the reasons for which (s)he is purchasing that kind of object and to his/her 
constraints. The seller usually leads the pursuing process, by applying a plan aimed at selling. The 
goal of such a plan is to find a configuration which satisfies all the constraints. Observe that, although 
the final purpose is always the same, the variety of the possible situations is so wide that it is not 
convenient to build a single, general, and complete plan that can be used in all the cases; on the 
contrary it is better to build the plan depending on the current conditions.  
The virtual seller is implemented as a software agent, which can be seen as a program that creates 
the site at the moment, based both on an application-domain knowledge base and on the user's 
intentions. Formalisms for representing and reasoning on intentions have been studied in the field of 
Natural Language, with the aim of building cooperative and automatic dialogue systems, which 
recognize the intentions of the human interlocutor and use them as a guide for answering in an 
appropriate way (see, for instance [Bretier and Sadek, 97]).  
Our focus is not on recognizing or infering user's intentions. User's needs are taken as input by the 
software agent, that uses them to generate the goals that will drive its behaviour. The novelty of our 
approach stands in exploiting panning capabilities not only for dialog act plannint, but also for 



building web site presentation plans guided by the user's goal. In this perspective the structure of the 
site is build by the system as a conditional plan, and according to the initial user's needs and 
constraints. The execution of the plan by the system corresponds to the navigation of the site, where 
the user and the system cooperate for building the configuration satisfying the user's needs. Indeed, 
during the execution the choice between the branches of the conditional plan is determined by means 
of the interaction with the user. 
 
3.  THE AGENT PROGRAMMING LANGUAGE 
 
The notion of computational agent is central in artificial intelligence (AI), because it supplies a 
powerful abstraction tool for characterizing complex systems, situated in dynamic environments, by 
using mentalistic notions such as beliefs, intentions, and desires [Rao and Georgeff, 91]. In this 
perspective, we describe a system in terms  of its beliefs about the world, its goals, and its 
capabilities of acting; the system must be able to autonomously plan and execute action sequences 
for achieving its purposes. 
Reasoning about the effect of actions in a dynamically changing world is one of the main problems 
that must be faced by intelligent agents. It is true, even if we consider the internal dynamics of the 
agent itself, i.e. the way it updates its beliefs and its goals, that can be regarded as the result of 
execution of actions on the mental state. 
In this section, we briefly describe DyLOG, a language for programming agents based on a logical 
theory for reasoning about actions and change in a logic programming setting, referring to the 
proposal in [Baldoni et al., 97], and its extension to deal with complex actions and knowledge-
producing actions [Baldoni et al., 98a, Baldoni et al., 00]. We will also show how to use it in order 
to develop web applications that require planning capabilities. As an example, we will specify our 
virtual seller as a software agent. 
DyLOG allows one to specify an agent's behavior by defining both a set of simple actions that the 
agent can apply (they are defined in terms of their preconditions and effects) and a set of complex 
actions (procedures), built upon simple ones. However, the fundamental characteristic that makes 
this language particularly interesting for agent programming is that, being based on a formal theory of 
actions, it can deal with reasoning about actions' effects in a dynamically changing environment and, 
as such, it supports planning. We will better explain this point in Section 3.4. 
The language is based on a modal action theory that has been developed in [Giordano et al., 00, 
Baldoni et al., 97, Baldoni et al., 98a, Baldoni et al., 00]. It provides a nonmonotonic solution to 
the frame problem by making use of abductive assumptions and it deals with the ramification 
problem by introducing a “causality” operator. The adoption of dynamic logic or a modal logic to 
deal with the problem of reasoning about actions and change is common to many proposals, such as 
for instance [Castilho et al. 97, De Giacomo and Lenzerini 95, Giordano et al. 98, Prendinger and 
Schurz 96, Schwind 97], and it is motivated by the fact that modal logic allows a very natural 
representation of actions as state transitions, through the accessibility relation of Kripke structures. 
Since the intentional notions (or attitudes), which are used to describe agents, are usually 
represented as modalities, our modal action theory is also well suited to incorporate such attitudes. 
The DyLOG interpreter (available at the address http://www.di.unito.it/~alice) has been 
implemented in Sicstus Prolog, thus a specification in DyLOG can be executed by this interpreter. 
Such an interpreter is a straightforward implementation of the proof procedure of the language. In 
this paper we use DyLOG as a language for building web applications which require planning 
capabilities. In particular our aim is to use the ability of a cognitive agent to autonomously reason on 



its own behavior in order to deal with  adaptivity at the navigation level, i.e. to dynamically 
generate a site being guided by the user's goals that are explicitly adopted through the interaction. 
Indeed, in this domain, one of the most important aspects is to define the navigation possibilities 
available to the user and to determine which page to display, based on the dynamic situation of the 
interaction with the user. 
 
3.1. Primitive actions 
 
In our action language each primitive action a ?  A is represented by a modality [a]. The meaning of 
the formulas [a]α is that α holds after any execution of action a. The meaning of the formula <a>α  
is that there is a possible execution of action a after which α holds. We also introduce a modality o, 
which is used to denote those formulas that hold in all states, that is, after any action sequence. 
A state consists of a set of fluents, i.e. properties whose true value may change over the time. In 
general we cannot assume that the value of each fluent in a state is known to an agent, and we want 
to be able of representing the fact that some fluents are unknown and to reason about the execution 
of actions on incomplete states. To represent explicitly the unknown value of some fluents, in 
[Baldoni et al., 00] we introduce an epistemic level in our representation language. In particular, we 
introduce an epistemic operator B, to represent the beliefs an agent has on the world: Bf will mean 
that the fluent f is known to be true, B? f will mean that the fluent f is known to be false. Fluent f is 
undefined in the case both ? Bf and ? B? f hold. We will write u(f) for ? Bf Ο? B? f. In our 
implementation of DyLOG (and also in the following) we do not explicitly use the epistemic 
operator B: if a fluent f (or its negation ? f) is present in a state, it is intended to be believed, 
unknown otherwise. Thus each fluent can have one of the three values: true, false or unknown. We 
use the notation u(f)? to test if the fluent f is unknown (i.e. to test if neither f  nor ? f is present in the 
state). 
Simple action laws are rules that allow to describe direct and indirect effects of primitive actions on 
a state. Basically, simple action clauses consist of action laws, precondition laws, and causal 
laws: 

• Action laws define direct effects of primitive actions on a fluent and allow actions with 
conditional effects to be represented. They have the form o(Fs → [a]F), where a is a 
primitive action name, a is a fluent, and Fs is a fluent conjunction, meaning that action a has 
effect on F, when executed in a state where the fluent preconditions Fs hold. 

• Precondition laws allow action preconditions, i.e. those conditions which make an action 
executable in a state, to be specified. Precondition laws have form o(Fs → <a>true), 
meaning that when the fluent conjunction Fs holds in a state, execution of the action a is 
possible in that state. 

• Causal laws are used to express causal dependencies among fluents and, then, to describe 
indirect effects of primitive actions. They have the form o(Fs → F), meaning that the fluent 
F holds if the fluent conjunction Fs holds too.1 

In DyLOG we have adopted a more readable notation: action laws have the form “a causes F if 
Fs”,  precondition laws have the form “a possible if Fs” and causal rules have the form “F if Fs”. 
Let us consider the example of the seller fully described in Section 3.5. One of the actions of our 
selling agent is the following: 

                                                 
1 In a logic programming context we represent causality by the directionality of implication. A more general 
solution, which makes use of modality "causes", has been provided in [Giordano et al., 00]. 



add(monitor(X)) : add the monitor X to the current configuration  
(1) add(monitor(X)) possible if true.  
(2) add(monitor(X)) causes has(monitor(X)).  
(3) add(monitor(X)) causes in_the_shopping_cart(monitor(X)) if true. 
(4) add(monitor(X)) causes credit(B1) if get_value(X,price,P) Ο credit(B) Ο (B1 is B+P). 

Rule (1) states that the action add(monitor(X)) is always executable. Action laws (2)-(4) describe 
the effects of the action's execution: adding the monitor of type X causes having the monitor X in the 
configuration under construction (2), having it into the shopping cart (3), and updating the current 
credit by summing the monitor price. Analogously, we define the other seller's primitive actions of 
adding to the configuration a CPU, a RAM, or a peripheral. 
An action can be executed in a state s if the preconditions of the action hold in s. The execution of 
the action modifies the state according to the action and causal laws. Furthermore we assume that 
the value of a fluent persists from one state to the next one, if the action does not cause the value of 
the fluent to change. 
In general, the execution of an action will have an effect on the environment, such as moving a robot 
or, in our case, showing a web page to the user. This can be specified in DyLOG by associating 
with each primitive action some Prolog code which implements the effects of the action on the world 
(in our case the web server is requested to send a given web page to the browser). Therefore, when 
an agent executes an action it must commit to it, and it is not allowed to backtrack by retracting the 
effects of the action. This is the main difference with respect to the use of the language for reasoning 
about actions, where the agent can do hypothetical reasoning on possible sequences of actions by 
exploring different alternatives. 
 
3.2. The interaction with the user: sensing and suggesting actions  
 
The interaction of the agent with the user is modeled in our language by means of actions for 
gathering inputs from the external world. In fact, in [3] we studied how to represent a particular kind 
of informative actions, called sensing actions, which allow an agent to gather knowledge from the 
environment about the value of a fluent F. Direct effects of sensing actions are interpreted as 
inputs from outside that are not under the agent control. They are represented using knowledge 
laws, that have form “s senses F”, meaning that action s causes to know whether F holds.2 In our 
application domain we are interested in inputs coming from the user. Then, getting a user input, can 
be seen as the result of sensing actions executed by the agent, that, after requesting the user to enter 
a value for a fluent (true or false in case of ordinary fluents, a value from the domain in case of fluents 
with an associated finite domain), senses the user's answer. Preconditions and indirect effects of 
sensing actions are expressed by precondition laws and causal rules, having the form defined above. 
In our running example, for instance, we introduce the sensing action ask_if_has_monitor(M), for 
knowing whether the user has already a monitor of type M: 

ask_if_has_monitor(M) possible if u(has(monitor(M))). 
ask_if_has_monitor(M) senses has(monitor(M)). 

Specifically for this application domain, we have also defined a special subset of sensing actions, 
called  suggesting actions. The difference w.r.t. normal sensing actions is that while those offer as 
alternative values for a given fluent its whole domain, suggesting actions offer only a subset of it, that 
is those values that lead to fulfill the goals. For representing the effects of such actions we use the 

                                                 
2 See [Baldoni et al., 00] for the translation of knowledge laws in the modal language. 



notation “s suggests F”, meaning that action s suggests a possibly selected set of values for fluent F 
and causes to know the value of F. As an example, our virtual seller can perform a suggesting action 
to offer to the user the choice among the available kinds of monitor: 

offer_monitor_type possible if true. 
offer_monitor_type suggests type_monitor(X). 

We use the results of the interaction with the user to generate the goals that will guide the selling 
agent behavior in order to build a computer satisfying the user's needs. We model it by causal rules, 
by describing the adoption of a goal as the indirect effect of requesting user's preferences. As an 
example, the answer the agent gets from the suggesting action offer_computer_type about the kind 
of computer that is requested (see Section 3.5 for a description), has as an indirect effect the 
generation of the goal to have a computer with those characteristics: 

goal(has(X)) if requested(X). 
Let us suppose that the agent has to assemble a computer for multimedia 
(requested(computer(multimedia)) is in the state), then, the causal rule above will generate the 
goal goal(has(computer(multimedia))). This main goal will generate a set of sub-goals to get the 
needed components to built the requested computer, by means of the appropriate instantiation  of 
the following causal rule: 

goal(has(C)) if goal(has(computer(X)) Ο component(X),C). 
 
3.3. Procedures 
 
Procedures define the behavior of complex actions. Complex actions are defined on the basis of 
other complex actions, primitive actions, sensing actions and test actions. Test actions are needed 
for testing if some fluent holds in the current state and for expressing conditional complex actions. 
They are written as “(Fs)?”, where Fs is a fluent conjunction. A procedure is defined as a collection 
of  procedure clauses of the form 

p0 is p1, …, pn (n ≥ 0) 
where p0 is the name of the procedure and pi, i = 1, …, n, is either a primitive action, or a sensing 
action, or a test action, or a procedure name (i.e. a procedure call).3 Procedures can be recursive 
and can be executed in a goal directed way, similarly to standard logic programs. 
From the logical point of view procedure clauses have to be regarded as axiom schemas of the 
logic. More precisely, each procedure clause p0 is p1, …, pn, can be regarded as the axiom schema 
<p1><p2> … <pn>ϕ ?  <p0>ϕ.4 Its meaning is that if in a state there is a possible execution of p1, 
followed by an execution of p2, and so on up to pn, then in that state there is a possible execution of 
p0. 
Procedures can be used to describe the behaviour of an agent. In particular we assume the 
behaviour of a rational agent to be driven by a set of goals. For each goal, the agent has a set of 
procedures (sometimes called plans) for achieving the given goal. 
The behaviour of our selling agent can be described by giving a collection of procedures for guiding 
the interaction with the user and for achieving various goals. The agent behaviour is driven by goals, 
which are fluents having form goal(F). They are generated by the interaction with the user by means 
of causal rules. After adopting a goal goal(F), an agent acts so to achieve it, until it believes the goal 

                                                 
3 Actually in Dylog  can also be a Prolog goal. 
4 These axioms have the form of rewriting rules as in grammar logics. In [Baldoni et al., 98] decidability results for 
subclasses of grammar logics are provided, and right regular grammar logics are proved to be decidable. 



is fulfilled (i.e. until it reaches a state where F holds). This corresponds to adopt a blind 
commitment strategy. 
The way the agent assembles a computer is specified by procedure assemble that, until the 
computer is believed assembled tries to achieve the goal of getting a still missing component. 

assemble is assembled?. 
assemble is assembled?; achieve_goal; assemble. 

Note that only when all of the goals to get the necessary components are fulfilled, the main goal to 
have a computer to propose to the user is reached and the computer is considered assembled (see 
in Section 3.5 causal rules (5),(6),(7) and (11)). Until there is still a goal to fulfill, the computer is 
considered not assembled. 
Procedure achieve_goal allows the agent to select in a non-deterministic way the goal of adding a 
component (monitor, CPU, RAM or peripheral) to the specific computer that is being built. When 
the agent has the goal to get a generic component, it has to choose among the available types, so it 
interacts again with the user to decide what specific component to add according to the user's 
preferences. 

achieve_goal is  goal(has(monitor(generic)))?; offer_monitor_type; type_monitor(X)?; 
add(monitor(X)). 

achieve_goal is goal(has(monitor(X)))?; (X ?   generic); add(monitor(X)). 
achieve_goal is goal(has(ram(generic)))?; offer_ram_type; type_ram(X)?; add(ram(X)). 
achieve_goal is goal(has(ram(X)))?; (X ?   generic); add(ram(X)). 
…  

As pointed out before, whenever the interpreter executes an action, it commits to that action, and 
cannot backtrack. Thus procedures are deterministic, or, at most, they can implement a kind of 
don't care non determinism. 
The above formulation of the behaviour of the agent, has many similarities with agent programming 
languages based on the BDI paradigm such as dMARS [d’Inverno et al., 97]. As in dMARS, plans 
are triggered by goals and are expressed as sequences of primitive actions, tests or goals. 
 
3.4. Planning 
 
Up to now we have assumed that DyLOG procedures which specify the behaviour of an agent are 
executed by an interpreter as in usual programming languages. However a rational agent must also 
be able to cope with complex or unexpected situations, by reasoning about the effects of a 
procedure before executing it. 
In general, a planning problem amounts to determine, given an initial state and a goal Fs, if there is 
a sequence of actions that, when executed in the initial state, leads to a state in which Fs holds. In 
our context, in which complex actions can be expressed as procedures, we can consider a specific 
instance of the planning problem in which we want to know if there is a possible execution of a 
procedure p leading to a state in which some condition Fs holds. In such a case the execution 
sequence is not an arbitrary sequence of atomic actions but it is an execution of p. This can be 
formulated by the query <p>Fs, which asks for a terminating execution of p (i.e. a finite action 
sequence) leading to a state in which Fs holds.  
The execution of the above query returns as a side-effect an answer which is an execution trace 
"a1, a2, …, am", i.e. a primitive action sequence from the initial state to the final one, which 
represents a linear plan. 



To achieve this, DyLOG provides a metapredicate plan(p, Fs, as), where p is a procedure, Fs a 
goal and as a sequence of primitive actions. The procedure p can be nondeterministic, and plan will 
extract from it a sequence as of primitive actions, a plan, corresponding to a possible execution of 
the procedure, leading to a state in which Fs holds, starting from the current state. Procedure plan 
works by executing p in the same way as the interpreter of the language, with a main differences: 
primitive actions are executed without any effect on the external environment, and, as a 
consequence, they are backtrackable. 
Instead of simply obtaining any plan, procedure plan could extract a best plan, according to some 
optimality criterion. In our case, plan uses iterative deepening to find the plan with the minimal 
number of actions, but it might be modified to make use of some domain dependent heuristics.  
Since procedures can contain sensing actions, whose outcomes are unknown at planning time, all the 
possible alternatives are to be taken into account. Therefore, by applying DyLOG planning 
predicate to a procedure that contains sensing actions we obtain a conditional plan whose branches 
correspond to the possible outcomes of sensing. 
The top level procedure, build_a_computer, describing the behavior of the selling agent, is 
reported hereafter. It makes use of the interleaving of planning and execution, by using the  
metapredicate plan. 

build_a_computer is  get_user_preferences; get_max_value_budget; 
plan(assembly,credit(C) Ο budget(B) Ο (C ≤ B), P); P. 

 

Figure 1 The result of the planning process when the user does not have any component 
and has a budget of 650 Euro. 

 
First, the agent starts to interact with the user to adopt his goals, asking what kind of computer the 
user is interested in, checking if the user has some of the components that are needed to assemble a 
computer with those characteristics (get_user_preferences), getting information about budget 
limitations (get_max_value_budget). Second it starts to plan how reach the goals, i.e. how to 
assemble the missing components of the computer, predicting also future interactions to be guided 



by the users preferences in the assembling process. Planning is needed to find configurations taking 
into accounts two interacting goals: the goal to assemble a computer satisfying the user needs and 
the goal to consider only configuration affordable by the user's budget. Finally, the agent executes 
the conditional plan resulted from the planning process. Let us assume to execute 
build_a_computer and to be in the case the user requested a computer for multimedia. In Figure 1 
we show one possible result of the planning process, given specific user's needs and budget. 
 
3.5. A virtual computer seller 
 
Let us see, as an example, how it is possible to implement a  program that creates a  virtual 
computer seller. The example is, for our choice, simple and a computer is represented only in terms 
of its components: "cpu", "ram", "monitor" plus a few peripherals. It is possible to buy three different 
kinds of computer: one for CAD processing, one for multimedia and one for word processing. Each 
of them is characterized by a different configuration. 
 
Finite domain specification 

computer(X) domain (X in [cad,multimedia,wordprocessing]). 
budget(X) domain (X in [450,550,650,750,850,1000]). 
requested(X) domain 

(X in [computer(cad),computer(multimedia),computer(wordprocessig)]). 
type_monitor(X) domain (X in [database:get_article(category(monitor),X)]). 
type_ram(X) domain (X in [database:get_article(category(ram),X)]). 
type_cpu(X) domain (X in [database:get_article(category(cpu),X)]). 
peripheral(X) domain (X in [database:get_article(category(peripheral),X)]).  

 
Knowledge Base on application domain  

component(computer(cad), peripheral(plotter)). 
component(computer(cad), cpu('pIII800')). 
component(computer(cad), monitor('19inch')). 
component(computer(cad), ram('256Mb')). 
component(computer(multimedia), peripheral(modem)). 
component(computer(multimedia), peripheral(audio)). 
component(computer(multimedia), monitor('19inch')). 
component(computer(multimedia), ram(generic)). 
component(computer(multimedia), cpu(generic)). 
component(computer(cad), peripheral(printer)). 
component(computer(cad), cpu(generic)). 
component(computer(cad), monitor(generic)). 
component(computer(cad), ram(generic)). 

 
Main procedure The behavior of our selling agent is described at the high-level by the main 
procedure, reported hereafter. 
 

build_a_computer is  get_user_preferences;get_max_value_budget; 
plan(assemble, credit(C) Ο budget(B) Ο (C ≤ B),P);P. 

get_user_preferences is  ask_computer_type; goal(has(ram(T))?; ask_has_ram(T); 



goal(has(monitor(T))?; ask_has_monitor(T); 
goal(has(ram(T))?; ask_has_ram(T). 

 
Suggesting actions The following suggesting actions allow to acquire information about the user's 
needs and preferences: about the budget limitation the user has, the kind of computer the user would 
like to buy and about the kind of components the user prefers among the available ones. 
 
get_max_value_budget: offer a set of maximum budget and get the value of budget(B) 

get_max_value_budget possible_if true. 
get_max_value_budget suggests budget(B). 

offer_computer_type: offer the available kinds of computer and get the preference about the 
requested computer 

offer_computer_type possible_if true. 
offer_computer_type suggests requested(X). 

offer_monitor_type: offer the available monitors and get the preference about the monitor type 
offer_monitor_type possible_if true. 
offer_monitor_type suggests type_monitor(X). 

offer_ram_type: offer the available RAM's and get the preference about the ram type  
offer_ram_type possible_if true. 
offer_ram_type suggests type_ram(X). 

offer_cpu_type: offer the available CPU's and get the preference about the monitor type 
offer_cpu_type possible_if true. 
offer_cpu_type suggests type_cpu(X). 

 
Sensing actions The following sensing actions allow the program to know whether the user already 
has some of the components the seller thinks to be necessary to assemble a computer satisfying the 
user's needs. The answer to these queries allows to revise the set of goals the seller wants to achieve 
for satisfying the user, taking in account new information about the user needs. In fact, in case of 
positive answer, the seller will update its goals, deleting, if necessary, the goal to “get the 
component” that the user already has. 
 
ask_if_has_monitor(T): ask if the user has a monitor of type T 

ask_if_has_monitor(T) possible_if u(has(monitor(T))). 
ask_if_has_monitor(T) senses has(monitor(T)). 

ask_if_has_cpu(T): ask if the user has a cpu of type T 
ask_if_has_cpu(T) possible_if u(has(cpu(T))). 
ask_if_has_cpu(T) senses has(cpu(T)). 

ask_if_has_ram(T): ask if the user has a ram of type T 
ask_if_has_ram(T) possible_if u(has(ram(T))). 
ask_if_has_ram(T)  senses has(ram(T)). 

 
Causal rules The knowledge about the computer obtained by the first interaction generates a main 
goal of the form goal(has(computer(T)), (clauses (1), (2)). The main goal generates a set of sub-
goals for getting the needed components (clause 3). A goal goal(F) is abandoned only when the 
agent reaches a state where F is believed (clause 4). When all the sub-goals to get the necessary 
components are fulfilled, also the main goal to have a computer to propose to the user is reached 



(clauses from (5) to (7)) and the computer is considered assembled (clause 11). Until there is still a 
goal to fulfill, the computer is considered not assembled (clause 12). 
 

 (1) goal(has(X))) if requested(X) Ο u(has(computer(X))). 
(2) goal(has(X))) if requested(X) Ο ? has(computer(X)). 
(3) goal(has(C)) if goal(has(computer(X)) Ο component(computer(X),C). 
(4) ? goal(has(X)) if has(X). 
(5) has(computer(cad)) if has(peripheral(plotter)) Ο has(monitor('19inch')) Ο 

has(ram('256Mb')) Ο has(cpu('pIII800')). 
(6) has(computer(multimedia)) if has(peripheral(modem)) Ο has(peripheral(audio)) Ο 

has(monitor('19inch')) Ο has(ram(generic)) Ο 
has(cpu(generic)). 

(7) has(computer(wordprocessing)) if has(peripheral(printer)) Ο has(monitor(generic)) Ο 
 has(ram(generic)) Ο has(cpu(generic)). 

(8) has(cpu(generic)) if has(cpu(X)). 
(9) has(ram(generic)) if has(ram(X)). 
(10) has(monitor(generic)) if has(monitor(X)). 
(11) assembled if has(computer(X)). 
(12) ? assembled if goal(X). 

 
Achieving goals The way the agent behaves to assemble a computer is specified by the procedure 
assemble that, until the computer is believed assembled, tries to achieve the goal to get a still missing 
component. 
 

assemble is   assembled?. 
assemble is   ? assembled?; achieve_goal; assemble. 
achieve_goal is  goal(has(monitor(generic)))?;offer\_monitor\_type ; 

type_monitor(X)?; add(monitor(X)). 
achieve_goal is  goal(has(monitor(X)))?; (X ?  generic)?;add(monitor(X)). 
achieve_goal is  goal(has(ram(generic)))?; offer_ram_type; 

type_ram(X)?; add(ram(X)). 
achieve_goal is  goal(has(ram(X)))?; (X ?  generic)?; add(ram(X)). 
achieve_goal is  goal(has(cpu(generic)))?; offer_cpu_type; 

type_cpu(X)?; add(cpu(X)). 
achieve_goal is  goal(has(cpu(X)))?; (X ?  generic)?;add(cpu(X)). 
achieve_goal is  goal(has(peripheral(X)))?; add(peripheral(X)). 

 
Atomic actions The following simple action laws define the primitive actions that allows to  add the 
single components (a monitor, a RAM a peripheral or a CPU) to the current configuration. 
 

add(monitor(X)) possible_if true. 
add(monitor(X)) causes has(monitor(X)) if true. 
add(monitor(X)) causes credit(B1) if get_value(X,price,P) Ο credit(B) Ο 

(B1 is  B + P). 
add(ram(X)) possible_if true. 
add(ram(X)) causes has(ram(X)) if true. 



add(ram(X)) causes credit(B1) if get_value(X,price,P) Ο credit(B) Ο 
         (B1  is B + P). 
add(cpu(X)) possible_if true. 
add(cpu(X)) causes has(cpu(X))  if true. 
add(cpu(X)) causes credit(B1) if  get_value(X,price,P) Ο credit(B) Ο 

(B1 is B + P). 
add(peripheral(X)) possible_if true. 
add(peripheral(X)) causes has(peripheral(X)) if true. 
add(peripheral(X)) causes credit(B1) if  get_value(X,price,P) Ο credit(B) Ο 

(B1 is B + P). 
add(C) causes in_the_shopping_cart(C) if true. 
 
4.  IMPLEMENTATION (WORK IN PROGRESS) 
 
In this section we will describe the virtual seller as we are currently implementing it in order to work 
in a client-server environment. We suppose that clients are commercial web browsers. 
As we said, the basic idea is to consider the web site as a plan for satisfying the user's intentions. 
Actually the plan will be a conditional plan, i.e. there will be nodes in which a set of alternative 
actions are possible. Each path will, in our case, correspond to a different computer configuration. 
All configurations in the conditional plan satisfy the user's intentions. The plan is built by the agent 
program, which, in the case of our computer seller is currently the one reported in Section 3. 
After it was built, the plan is executed. Executing a conditional plan implies following one of the 
paths in the tree; only the part of the site corresponding to this path will actually be built. The 
execution of some of the actions in the path will affect only the data base that contains the 
information about the components that are currently contained in the store. For instance, if a certain 
processor was selected the agent has to decrease the number of available processors of that kind. 
Other actions, those that correspond to a branching point, require a dialogue with the user. 
Actually, we handle a more generale situation in which many clients can connect to the server and 
start different, parallel purchases. Each client will be served by a dedicated selling agent. Given a 
client, the selling-agent responsible for that client builds the conditional plan starting from the client's 
expressed intentions. The nodes of the plan will correspond to the subsequent, foreseen alternative 
states and possible actions. 
We have said that the interaction starts with the expression of the client's intentions, that is what the 
client is looking for (what it needs a computer for). Intentions can either belong to a set of 
alternatives that was defined a priori (such as “internet browsing”) or they can be composed as a 
DyLOG query on the web browser, and are sent to the web server (in our case Apache) of the 
server machine. The web server properly dispatches the requests to the right DyLOG selling agent 
running in a Sicstus Prolog environment by passing through a java servlet, that works as an interface. 
We used java servlets because it was not possible to directly embed Sicstus Prolog into the web 
server in such a way that sessions could be left open with the browsers. Our problem was that, as 
we have partly mentioned and we will better see further on, the agent does not simply send the result 
of its computation (the whole conditional plan) to the client but it sends step by step partial results of 
its computation, i.e. the single pages of the site, because the choice of which part of the site to build 
and explore is actually up to the user. Furthermore, we had to manage the multi-user situation in 
which many clients are parallely carrying on many conversations with as many prolog agents. 



Let us now consider actions and, in particular, their execution. The most general case is the one in 
which a set of alternatives for a given component is available. In our application domain the choice 
of which to choose is up to the user, so (s)he will be shown an HTML page containing the possible 
alternatives. For each item an auxiliary page containing its technical characteristics will also be 
produced, so that the user can be made aware of the details that can help him/her to make his/her 
mind. Such information is taken by the servlet from the component data base. In different words, the 
agent sends to the servlet a command of the kind “visualize CPU1, CPU2” and the servlet produces 
some HTML code that contains the information related to the two CPU's identified by CPU1 and 
CPU2 in the data base plus the request to make a choice. Once an answer is returned from the 
client, this is passed on to the agent. So the execution of the agent's action consists of the following 
steps: 1. produce HTML code related to the choice; 2. show such a code to the user; 3. wait for 
feedback from the user. Afterwards the agent performs an action that is transparent to the client, that 
consists in adding the new fact to the knowledge base and take it into account for passing to the next 
step: sending to the servlet the information about which page to show next. All unselected 
alternatives are forgotten. 
 
5.  CONCLUSIONS AND FUTURE WORK 
 
In this paper we have presented a new perspective on interface adaptation by tackling the problem 
of the construction of adaptive web sites based on the user's intentions. This approach is orthogonal 
to the classical approach of focusing on the user's model and it is our opinion that a real adaptive 
system should encompass both these aspects. We have shown how modal logic programming 
languages can be used to define the behavior of an agent that builds the web site on demand, 
according to the needs of each client. 
The work that we have presented is in progress. It started as an application of DyLOG as an agent 
programming language, and it is actually the core of  a wider project in which the agent will be 
supplied also with replanning capabilities. Replanning may seem useless in a system that returns a 
plan only if it does not fail. However, one must take into account also the fact that the user may be 
unable to fully express its intentions or it may become aware during the dialogue of some 
consequences of its initials choices that (s)he would like to change. In these cases the client should 
be able to alert the system  that (s)he is not interested in the options supplied by it and that maybe 
new facts should be taken into account. 
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